摘要
针对城市给水管网漏失定位困难的问题,采用模糊聚类方法对压力监测点进行了优化布置,并在压力在线监测的基础上建立了管网漏损定位模型.利用蚁狮优化算法和粒子群优化算法两种智能群体优化算法对模型进行求解,并以华北某沿海城市的某工业区给水管网为算例,分析对比了两种算法的运行情况.结果表明,在漏损定位问题上,蚁狮优化算法具有更强的全局优化能力,更高的搜索效率.
In view of the difficulty in locating the leakage of urban water supply network,fuzzy clustering was used to optimize the layout of pressure monitoring points,then the leakage location model of water supply network was established based on pressure monitoring.Two swarm intelli-gent optimization algorithms,ant lion optimization and particle swarm optimization were used to solve the model,and the water supply network in an industrial area of a coastal city in North China was taken as an example to analyze and compare the operation of the two algorithms.The results show that the ant lion optimization algorithm has stronger global optimization ability and higher search efficiency in the problem of leakage location.
作者
刘松子
吕谋
李红卫
LIU Songzi;LYU Mou;LI Hongwei(School of Environmental and Municipal Engineering,Qingdao University of Technology,Qingdao 266000,China)
出处
《给水排水》
CSCD
北大核心
2022年第7期136-142,共7页
Water & Wastewater Engineering
基金
国家自然科学基金(51778307)
山东省重点研发计划(GG201809260435)。
关键词
给水管网
压力监测点
模糊聚类
漏损定位
智能优化算法
Water supply network
Pressure monitoring point
Fuzzy clustering
Leakage loca-tion
Intelligent optimization algorithm