摘要
针对承载网络告警量大、告警关联性复杂、故障定位难、人力成本消耗大等一系列问题开展研究,通过采集现网承载网络运行数据,如告警、拓扑、网元、业务、工单数据等,引入人工智能技术进行告警根因关联和故障智能诊断,提出了一系列智能告警分析算法,开发了一套承载网络智能告警分析系统,已建立主流传送承载厂商统一的告警关联规则知识库,实现故障准确派单和故障原因的快速诊断,促进承载网络的自我维护、智能运营能力和运维效率提升。
It conducts research on a series of problems such as the large amount of alarms,the complex alarm correlation,the difficulty in fault location,and the high labor cost in the bearer network.By collecting the operating data of the existing bearer network such as alarms,topology,network elements,services,work order data,etc.,AI technology is introduced for alarm root cause correlation and fault intelligent diagnosis,a series of intelligent alarm analysis algorithms are proposed,and a set of intelligent alarm analysis system for bearer network is developed.A unified knowledge database of alarm association rules has been established for mainstream transmission bearer vendors to achieve accurate fault dispatch and rapid diagnosis of fault causes,which promotes the self-maintenance,intelligent operation capability and operation and maintenance efficiency of the bearing network.
作者
赵良
张贺
薛金明
潘皓
Zhao Liang;Zhang He;Xue Jinming;Pan Hao(China Unicom Research Institute,Beijing 100048,China;China Unicom Jiangsu Branch,Nanjing 210019,China)
出处
《邮电设计技术》
2022年第7期77-82,共6页
Designing Techniques of Posts and Telecommunications
关键词
人工智能
告警
关联规则
故障
网络
Artificial intelligence
Alarm
Association rules
Failure
Network