摘要
以等距结点基础,在零点附近增加一些结点,得到一类新的结点组.研究|x|在这类结点组的有理插值,得到确切的逼近阶为O(1/n^(2)logn).这个结果优于结点组取等距结点、(第二类)Chebyshev结点、调整的(第二类)Chebyshev结点和正切结点的有理插值.
In this paper, a new nodes is obtained by adding some nodes near the zero point based on the equidistant nodes foundation. The rational interpolation of |x|at this kind of nodes is studied, and it is obtained that the exact order of approximation is O(1/n^(2)logn).This result is better than the rational interpolation of equidistant nodes, Chebyshev nodes(of the second kind), adjusted Chebyshev nodes(of the second kind) and tangent nodes.
作者
张慧明
李建俊
ZHANG Huiming;LI Jianjun(College of Mathematics and Physics,Hebei GEO University,Shijiazhuang 050031,China;Minzu College Affaliated to Hebei Normal University,Shijiazhuang 050091,China)
出处
《华中师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2022年第4期573-576,共4页
Journal of Central China Normal University:Natural Sciences
基金
河北省自然科学基金项目(A2015403050)。
关键词
拟等距结点
有理插值
Newman型有理算子
逼近阶
quasi-equidistant nodes
rational interpolation
Newman-type rational operators
order of approximation