期刊文献+

一种基于加权改进平滑l_(0)范数的DOA估计方法 被引量:1

A DOA estimation method based on weighted improved smoothing l_(0) norm
下载PDF
导出
摘要 为了解决基于平滑l_(0)范数最小化方法在低信噪比、少快拍下求解波达方向(DOA)估计精度不高的问题,提出一种加权改进平滑l_(0)范数方法。首先将空间进行等角度均匀划分,构造稀疏表示的DOA估计模型,并利用奇异值分解获取接收信号子空间;由于直接求取压缩感知l_(0)范数是非确定性多项式难(NP-hard)问题,提出一种逼近程度更高的复合优化平滑函数去拟合l_(0)范数,并采用加权机制,加速稀疏解的获取;选择一个恰当的递减序列(ρ_(1),ρ_(2)…ρ_(k)),针对每个ρ,通过不断迭代采用最速下降法求解所提复合优化函数的最小解,最终将重构信号映射到空间划分网格,从而得到DOA估计值。仿真结果表明,该方法相比原始的平滑l_(0)范数最小化方法、L1-SVD和正交匹配追踪(OMP)算法在低信噪比、少快拍下具有更优的DOA估计性能。 In order to solve the problem of low accuracy of direction of arrival(DOA)estimation based on smooth l_(0)norm minimization method under low signal-to-noise ratio and few snapshots,a weighted improved smooth l_(0)norm method is proposed.Firstly,the space is evenly divided at equal angle to construct a sparse DOA estimation model,and the received signal subspace is obtained by singular value decomposition.Since it is non-deterministic polynomial hard(NP-hard)to obtain the compressed sensing norm directly,a composite optimization smoothing function with higher approximation is proposed to fit the norm,and a weighting mechanism is used to accelerate the acquisition of sparse solution;An appropriate sequence (ρ1,ρ2…ρk) is determined.For each ρ,the steepest descent method is used to solve the minimum value of the proposed composite optimization function through continuous iteration.Finally,the reconstructed signal is mapped to the spatial grid,so as to obtain the DOA estimation value.Simulation results show that compared with the original smoothing norm minimization method,L1-SVD and orthogonal matching pursuit(OMP)algorithm,the algorithm has better DOA estimation performance under low signal-to-noise ratio and less snapshots.
作者 王勇 李韬 项建弘 WANG Yong;LI Tao;XIANG Jianhong(College of Information and Communication Engineering,Harbin Engineering University,Harbin 150001,China)
出处 《应用科技》 CAS 2022年第4期38-43,共6页 Applied Science and Technology
基金 通信抗干扰重点实验室项目(9140C020201120C02002).
关键词 DOA估计 压缩感知 平滑l0范数 奇异值分解 复合优化函数 加权机制 最速下降法 DOA estimation compressed sensing smooth l0 norm singular value decomposition compound optimization function weighting mechanism steepest descent method
  • 相关文献

参考文献9

二级参考文献68

  • 1陈婷,罗景青.相干信号源的空间平滑法处理及其效果分析[J].舰船电子工程,2006,26(3):160-162. 被引量:1
  • 2Candès E J,Wakin M B.An introduction to compressivesampling[J].IEEE Signal Processing Magazine,2008,25(2):21 30
  • 3Baraniuk R G.Compressive sensing[J].IEEE SignalProcessing Magazine,2007,24(4):118 121
  • 4Candès E J,Romberg J K,Tao T.Stable signal recoveryfrom incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,59(8):1207 1223
  • 5Blumensath T,Davies M E.Gradient pursuits[J].IEEETransactions on Signal Processing,2008,56(6):2370 2382
  • 6Dai W,Milenkovic O.Subspace pursuit for compressivesensing signal reconstruction[J].IEEE Transactions onInformation Theory,2009,55(5):2230 2249
  • 7Mallat S G,Zhang Z F.Matching pursuits withtime-frequency dictionaries[J].IEEE Transactions on SignalProcessing,1993,41(12):3397 3415
  • 8Tropp J A,Gilbert A C.Signal recovery from randommeasurements via orthogonal matching pursuit[J].IEEETransactions on Information Theory,2007,53(12):46554666
  • 9Needell D,Vershynin R.Uniform uncertainty principle andsignal recovery via regularized orthogonal matching pursuit[J].Foundations of Computational Mathematics,2009,9(3):317 334
  • 10Figueiredo M A T,Nowak R D,Wright S J.Gradientprojection for sparse reconstruction:application to compressedsensing and other inverse problems[J].IEEE Journal ofSelected Topics in Signal Processing,2007,1(4):586 597

共引文献50

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部