期刊文献+

基于MCEM算法的多元正态分布均值向量估计

Mean vector estimation of multivariate normal distribution based on the MCEM algorithm
下载PDF
导出
摘要 将Monte Carlo EM算法应用到存在缺失数据的多元正态分布数据中,给出了其均值向量的估计公式,并利用R语言进行了不同样本量下的随机模拟,最后将模拟结果与传统均值插补方法进行了对比,结果表明MCEM算法估计效果相比于传统均值插补方法更好. The Monte Carlo EM algorithm is used in multivariate normal distribution data with missing data,and the estimation formula of its mean vector is given.The random simulation under different sample size is carried out by using R programming language.Finally,the simulation results are compared with the traditional mean imputation method,and the results show that the MCEM algorithm is more accurate than the traditional method.
作者 殷雨晨 陈兆荣 YIN Yuchen;CHEN Zhaorong(School of Economics,Tongling University,Tongling Anhui 244000)
出处 《宁夏师范学院学报》 2022年第7期25-29,共5页 Journal of Ningxia Normal University
关键词 多元正态分布 数据缺失 Monte Carlo EM算法 Multivariate normal distribution Data missing Monte Carlo EM algorithm
  • 相关文献

参考文献4

二级参考文献22

  • 1毛用才,张高飞.几何分布的一个统计特征[J].数理统计与应用概率,1995,10(1):61-67. 被引量:5
  • 2胡二琴,骆旭锋.数据缺失场合下一类单参数指数族的参数估计[J].湖北工业大学学报,2006,21(1):80-82. 被引量:1
  • 3吕王勇,吴耀国,马洪.基于EM算法的对数正态分布参数估计[J].统计与决策,2007,23(12):21-23. 被引量:13
  • 4Meng X L, Rubin D B. Maximum Likelihood Estimation via the ECM Algorithm[J]. A General Framework. Biometrika, 1993,80(2):267-278.
  • 5SAS Institute Inc. Base SAS 9.1 Procedures Guide[M]. [S.1] : SAS Publishing, 2004.
  • 6陈新海. 最佳估计理论[M].北京:北京航空航天大学出版社,1985.
  • 7Dempster A, Laird N, Rubin D. Maximum likelihood eitimation from incomplete data via EM algorithm [J].J. Royal Statistical Society Series B, 1977, 39: 1~38.
  • 8Ghahramami Z, Jordan M. Learning from incomplete data [R].Technical Report AI Lab Memo No.1509, CBCL Paper No. 108, MIT AI Lab, August 1995.
  • 9Blimes J. A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden markov model [R].TR-97-021, April, 1998. http://www.cs.berkeley.edu/~blimes.
  • 10钱颂迪 顾基发 等.运筹学[M].清华大学出版社,1990..

共引文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部