期刊文献+

基于PCA和改进BP神经网络的信息安全评估模型构建 被引量:1

Construction of information security evaluation model based on PCA and improved BP neural network
下载PDF
导出
摘要 为了提高空间维度循环感知网络传输信息的安全性,构建基于PCA和改进BP神经网络的信息安全评估模型.首先通过空间维度循环感知网络信息的数据存储结构特征分析和集成处理,对空间维度循环感知网络信息的主成分特征分布加密和编码,再采用主成分特征分布循环密钥构造分析和算术编码方法,得到面对不同数据库结构模型的网络信息分布知识库,然后构建网络信息的主成分特征分布密码结构,获取密钥安全评估协议的网络信息自相关函数,最后采用改进BP神经网络,实现信息安全评估模型的构建.测试表明,采用该方法进行空间维度循环感知网络传输信息安全评估的加密性能较好,提高信息输出的安全性和抗攻击能力. In order to improve the security of information transmitted by spatial dimension loop-aware networks,an information security evaluation model based on PCA and improved BP neural network is constructed.Firstly,the data storage structure features are analyzed and the information data is integrated in spatial dimension loop-aware networks.Secondly,the principal component feature distribution of the informative data is encrypted and encoded in spatial dimension loop-aware networks.Thirdly,the spatial dimension loop-aware networks information distribution knowledge base of different database structure models is obtained by adopting the principal component feature distribution circular key construction analysis and arithmetic coding method.Next,the coded feature distribution of the key security assessment protocol is obtained by constructing the principal component feature distribution cryptographic structure of the spatial dimension loop-aware network information.Finally,the improved BP neural network is used to realize the construction of information security evaluation model.The test results show that using this method to transmit information the in spatial dimension loop-aware networks the encryption performance of the security evaluation is better,and the security and anti-attack ability of information output can be effectively improved.
作者 赵男男 ZHAO Nannan(School of Accounting,Zhanjiang University of Science and Technology,Zhanjiang Guang dong 524094;School of Computer Science and Engineering,Guangdong Ocean University,Yangjiang Guang dong 529500)
出处 《宁夏师范学院学报》 2022年第7期86-93,共8页 Journal of Ningxia Normal University
基金 广东省普通高校特色创新项目(2020KTSCX207).
关键词 PCA 改进BP神经网络 信息安全 评估模型 抗攻击 PCA Improve BP neural network Information security Evaluation model Anti-attack
  • 相关文献

参考文献15

二级参考文献75

  • 1刘奇旭,张翀斌,张玉清,张宝峰.安全漏洞等级划分关键技术研究[J].通信学报,2012,33(S1):79-87. 被引量:36
  • 2陈秀真,郑庆华,管晓宏,林晨光.层次化网络安全威胁态势量化评估方法[J].软件学报,2006,17(4):885-897. 被引量:342
  • 3邢春晓,高凤荣,战思南,周立柱.适应用户兴趣变化的协同过滤推荐算法[J].计算机研究与发展,2007,44(2):296-301. 被引量:148
  • 4XU Z. Demand-oriented traffic measuring method for network security situation assessment [J]. Journal of Networks, 2014, 9(4): 221-224.
  • 5FISCHER Y, BEYERER J. Ontologies for probabilistic situation assessment in the maritime domain [C]// CogSIMA 2013: Proceedings of the 2013 IEEE International Multi-Disciplinary Conference on Cognitive Methods in Situation Awareness and Decision Support. Piscataway: IEEE, 2013: 102-105.
  • 6BASS T. Intrusion detection systems & multisensor data fusion: cre-ating cyberspace situational awareness [J]. Communications of the ACM, 2000, 43(4): 99-105.
  • 7GORODETSKY V, KARSAEV O, SAMOILOV V. On-line update of situation assessment based on asynchronous data streams [C]// Proceedings of the 8th International Conference on Knowledge-Based Intelligent Information and Engineering Systems, LNCS 3213. Berlin: Springer, 2004: 1136-1142.
  • 8FRIGAULT M, WANG L, SINGHAL A, et al. Measuring network security using dynamic Bayesian network [C]// Proceedings of the 4th ACM Workshop on Quality of Protection. New York: ACM, 2008: 23-30.
  • 9WANG L, WANG B, PENG Y. Research the information security risk assessment technique based on Bayesian network [C]// Proceedings of the 3rd International Conference on Advanced Computer Theory and Engineering. Piscataway: IEEE, 2010: 600-604.
  • 10JI X, PATTINSON C. AHP implemented security assessment and security weight verification [C]// Proceedings of the 2010 IEEE Second International Conference on Social Computing. Piscataway: IEEE, 2010: 1026-1031.

共引文献277

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部