期刊文献+

受媒体报道和疫苗接种影响的传染病模型分析 被引量:4

Analysis of infectious disease models influenced by media coverage and vaccination
下载PDF
导出
摘要 为了研究媒体报道和疫苗接种对疾病传播的影响,建立了一个同时受媒体报道和疫苗接种影响的传染病模型.利用微分方程基本定理证明了模型解的有界性和非负性,分析了无病平衡点的全局稳定性以及地方病平衡点的局部稳定性,并证明了疾病的持久性.最后通过数值模拟分析了意识转化率和疫苗接种率对疾病传播的影响.研究结果表明,通过媒体报道提高群众意识以及提高疫苗接种率都有利于传染病的控制. A model of infectious diseases affected by both media coverage and vaccination was established to study the effects of media coverage and vaccination on disease transmission.By using the basic theorem of differential equations,the boundedness and non-negativity of the model solutions were proved,the global stability of the disease-free equilibrium and the local stability of the endemic equilibrium were analyzed,and the persistence of the disease was also proved.Finally,the effects of consciousness conversion rate and vaccination rate on the spread of the disease were analyzed by numerical simulations.The results show that increasing public awareness through media coverage and increasing vaccination rate are conducive to the control of infectious diseases.
作者 刘中凯 刘俊利 刘白茹 LIU Zhong-kai;LIU Jun-li;LIU Bai-ru(School of Science,Xi'an Polytechnic University,Xi'an 710048,China)
出处 《哈尔滨商业大学学报(自然科学版)》 CAS 2022年第4期442-449,共8页 Journal of Harbin University of Commerce:Natural Sciences Edition
基金 陕西省自然科学基础研究计划项目(2021JM-445) 西安工程大学研究生创新基金(chx2021033).
关键词 媒体报道 疫苗接种 微分方程 稳定性 持久性 数值模拟 media coverage vaccination differential equation stability persistence numerical simulation
  • 相关文献

参考文献7

二级参考文献49

  • 1赵宏伟.一类Kolmogorov系统的极限环[J].吉林化工学院学报,2004,21(4):99-101. 被引量:1
  • 2闵颖颖,刘允刚.Barbalat引理及其在系统稳定性分析中的应用[J].山东大学学报(工学版),2007,37(1):51-55. 被引量:104
  • 3Liu Y, Cui J. The impact of media convergence on the dynamics of infectious diseases[J]. Interna- tional Journal of Biomathematics, 2008(1): 65-74.
  • 4Cui J, Tao X, Zhu H. An SIS infection model incorporating media convergence [J]. The Rocky Mountain Journal of Mathematics, 2008(38): 1323-1334.
  • 5Cui J, Sun Y, Zhu H. The impact of media on the spreading and control of infectious disease[J]. Journal of Dynamics and Differential Equations, 2008(20): 31-53.
  • 6Misra A K, Sharma A , Shukla J B . Modeling and analysis of effects of awareness programs by media on the spread of infectious diseases[J]. Mathematical and Computer Modeling, 2011(53): 1221-1228.
  • 7Funk S, Gilad E, Jansen V A A. Endemic disease, awareness, and local behavioural response[J]. Journal of Theoretical Biology, 2010(264): 501-509.
  • 8Funk S, Gilad E, Watkins C, Jansen V A A. The spread of awareness and its impact on epidemic outbreaks[J]. PNAS, 2009(106): 6872-6877.
  • 9Freedman H I, So J W H. Global stability and persistence of simple food chains[J]. Mathematical Biosciences, 1985(76): 69-86.
  • 10Freedman H I, Rao V S H. The trade-off between mutual interference and time lags in predator-prey systems[J]. Bulletin of Mathematical Biology,1983(45): 991-1004.

共引文献33

同被引文献29

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部