期刊文献+

自适应高效无线传感器网络时间同步优化算法 被引量:3

Adaptive and Efficient Time Synchronization Optimization Algorithm in Wireless Sensor Networks
下载PDF
导出
摘要 针对无线传感器网络全网多跳自适应时间同步效率低的问题,在接收端与接收端同步模型基础上,该文提出一种自适应高效无线传感器网络时间同步优化算法(AEO)。首先,双节点同步时,从节点接收来自参考节点的同步消息并进行确认,在同步周期结束后通过拟合估计和数据更新完成时间修正,构建交互参数同步包,并与主节点进行信息交换完成同步过程。其次,全网同步时,建立Voronoi多边形拓扑结构,认定拓扑结构中参考节点和邻域节点身份(ID),参考节点覆盖区域间通过邻域节点交换同步信息,实现自适应多区域节点联合时间同步。仿真结果表明该算法在双节点时间同步中能够保证同步误差较小,网络能耗较低;同时,Voronoi拓扑相较于其他典型拓扑,在连通效率和收敛时间方面均有所改进。 To solve the problem of low efficiency for multiple-hop adaptive time synchronization in Wireless Sensor Networks(WSN),an Adaptive and Efficient time synchronization Optimization(AEO)algorithm is proposed based on receiver-receiver time synchronization model.Firstly,in pairwise time synchronization,slave node receives the synchronization message from reference node and confirmed.After the synchronization period,the time correction is realized by fitting estimation and data update.Then the interactive parameter synchronization package is constructed.The slave node exchanges interactive parameter synchronization package with the master to realize pairwise synchronization.Secondly,the Voronoi polygon topology is established.The network also identifies the IDentification(ID)of reference nodes and neighbor nodes in the topology.The coverage area of reference nodes exchange synchronization information by neighboring nodes to realize adaptive regions joint time synchronization.The simulation results show that the algorithm has less synchronization errors and lower network energy consumption in pairwise time synchronization.Meanwhile,the Voronoi topology improves connectivity efficiency and convergence time compared with other typical topologies.
作者 王义君 钱志鸿 WANG Yijun;QIAN Zhihong(College of Electronic&Information Engineering,Changchun University of Science and Technology,Changchun 130022,China;College of Communication Engineering,Jilin University,Changchun 130012,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2022年第8期2802-2813,共12页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61771219,61540022) 吉林省发改委产业技术研究与开发项目(2019C036-7)。
关键词 无线传感器网络 时间同步 接收端同步 VORONOI图 Wireless Sensor Networks(WSN) Time synchronization Receiver synchronization Voronoi topology
  • 相关文献

参考文献2

二级参考文献20

  • 1Liu Qiang, Huang Xiaohong, Leng Supeng, et al.. Deployment strategy of wireless sensor networks for Internet of Things[J]. China Communications, 2011, 8(8): 111-120.
  • 2Faranak H, Julien S, Frits V, et al.. Analysis of a clock synchronization protocol for wireless sensor networks[J].Theoretical Computer Science, 2012, 413(1): 87-105.
  • 3Elson J, Girod L, and Estrin D. Fine-grained network time synchronization using reference broadcasts[C]. The Fifth Symposium on Operating Systems Design and Implementation, Boston, USA, Dec. 9-11, 2002: 147-163.
  • 4Li L, Yang X, and Zhang J Y. A bio-inspired time synchronization algorithm for wireless sensor networks[C]. ICCET 2010 International Conference on Computer Engineering and Technology, Chengdu, China, Apr. 16-18, 2010, 4: 306-311.
  • 5Marotim M, Kusy B, and Simon G. The flooding time synchronization protocol[C]. The Second International Conference on Embedded Networked Sensor Systems, Baltimore, USA, Nov. 3-5, 2004: 39-49.
  • 6Samanta A K, Mukherjee A, Hossein S M, et al.. Efficient time synchronization by K-D tree in WSN[C]. The Second International Conference on Computer and Automation Engineering, Singapore, Feb. 26-28, 2010, 5: 655-659.
  • 7Chaudhari Q M, Serpedin E, and Qaraqe K, On maximum likelihood estimation of clock offset and skew in networks with exponential delays[J]. IEEE Transactions on Signal Processing, 2008, 56(4): 1685-1697.
  • 8Yan Ning-ning. Superconvergence Analysis and a Posteriori Error Estimation in Finite Element Methods[M]. Beijing: Science Press, 2008: 67-95.
  • 9Gradowska P L and Cooke R M. Least squares type estimation for Cox regression model and specification error[J] Computational Statistics & Data Analysis, 2012, 56(7): 2288-2302.
  • 10刘影,钱志鸿,王雪,李奕男.基于到达时间差的无线传感器网络质心定位算法[J].吉林大学学报(工学版),2010,40(1):245-249. 被引量:12

共引文献26

同被引文献32

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部