摘要
近年来,Wi-Fi感知凭借低成本、非接触、不受光照影响、隐私性好等优势,成为人机交互的新兴研究方向。为了提高室内定位技术的精度,提出了一种基于信道状态信息(Channel State Information,CSI)的加权混合回归(Weighted Mixed Regression,WMR)室内定位算法WMR_SKR。该方法分为离线训练和在线预测两个阶段。离线阶段单独训练支持向量回归(Support Vector Regression,SVR)和K近邻回归(K-Nearest Neighbor Regression,KNR)模型,并获得最优的权重分配,建立加权混合回归模型WMR_SKR。在线阶段通过WMR_SKR模型实时预测目标的位置。实验结果表明,本文的WMR_SKR模型在视距环境中82%的概率下定位精度能够达到1 m,非视距环境中80.6%的概率下达到1.5 m,且平均误差和标准误差均小于1.5 m。WMR_SKR模型有效融合了SVR和KNR的优点,提高了室内定位技术的性能。
In recent years,Wi-Fi sensing with the advantages of low cost,non-contact,not being affected by light,and good privacy has become a new research domain of human-computer interaction.To improve the accuracy of the indoor localization method in the real environment,a weighted mixed regression indoor localization method(WMR_SKR)based on channel state information(CSI)is proposed.The localization process is divided into two phases:off-line and on-line.In the off-line phase,the support vector regression(SVR)and K-nearest neighbor regression(KNR)models are trained independently and the optimal weights are obtained.In the on-line phase,the target position is predicted by the WMR_SKR model.The experimental results show that the WMR_SKR can reach 1 m with 82%probability in light of sight environment,1.5 m with 80.6%probability in non-line of sight environment,and the average error and standard error are less than 1.5 m.The WMR_SKR model integrates the advantages of SVR and KNR effectively and improves indoor localization technology’s performance.
作者
李芬芳
汝春瑞
党小超
郝占军
LI Fenfang;RU Chunrui;DANG Xiaochao;HAO Zhanjun(College of Computer Science and Engineering,Northwest Normal University,Lanzhou Gansu 730070,China;Gansu Province Internet of Things Engineering Research Center,Lanzhou Gansu 730070,China)
出处
《传感技术学报》
CAS
CSCD
北大核心
2022年第5期667-675,共9页
Chinese Journal of Sensors and Actuators
基金
国家自然科学基金项目(61762079)
甘肃省科技重点研发项目(20YF8GA048)
甘肃省科技创新基地和人才计划项目(20JR10RA096)
西北师范大学青年教师科研能力提升计划项目(NWNU-LKQN2019-28)。
关键词
Wi-Fi感知
室内定位技术
信道状态信息
支持向量回归
K近邻回归
加权混合回归
Wi-Fi sensing
indoor localization
channel state information
support vector regression
K-nearest neighbor regression
weighted mixed regression