期刊文献+

结合BERT词嵌入和双向循环卷积神经网络的新闻文本分类研究 被引量:2

A Study of News Text Classification Combining BERT Word Embedding and Bidirectional Recurrent Convolutional Neural Network
下载PDF
导出
摘要 针对数字信息时代网络舆情爆发的复杂性及不可控性,提出一种融合BERT、TEXTRCNN、BILSTM-CRF的新闻文本分类模型,致力于提高新闻文本分类的准确率,通过采用BERT词嵌入技术高效获得句子语义特征,利用TEXTRCNN双向递归的结构以及BILSTM-CRF模型的运用来解决序列标注问题,综合考虑上下文捕捉、词嵌入、文本特征等因素,提高对新闻识别的准确性。实验证明,使用该融合模型对新闻文本分类的准确率达到0.9551,且具有较好的泛化能力,能够更好地帮助有关部门及时处理突发舆情和失控事件。 Aiming at the complexity and uncontrollability of the outbreak of network public opinion in the digital information age,a news text classification model integrating BBRT,TEXTRCNN and BILSTM-CRF is proposed,Committed to improving the accuracy of news text classification.The semantic features of sentences are efficiently obtained by using BERT word embedding technology,and the structure of TEXTRCNN two-way recursion is used.And the use of the BILSTMCRF model to solve the sequence annotation problem,comprehensively considering the factors such as context capture,word embedding,text features,etc.,to improve the accuracy of news recognition.Experiments have shown that the accuracy rate of news text classification using the fusion model is 0.9551,and it has good generalization ability,which can better help relevant departments deal with sudden public opinion and out-of-control events in a timely manner.
作者 任鹏 李文杰 舒宇杰 孙航 赵旖旎 REN Peng;LI Wenjie;SHU Yujie;SUN Hang;ZHAO Yini(Southwest Jiaotong University Hope College,Chengdu,Sichuan 610500,China;Foreign language training center of Sichuan University,Chengdu,Sichuan 610500,China)
出处 《信息记录材料》 2022年第6期20-23,共4页 Information Recording Materials
基金 四川省省级大学生创新创业训练计划项目(S202114262111)。
关键词 BERT 中文新闻 文本分类 TEXTRCNN BILSTM-CRF BERT Chinese news Text classification TEXTCRCNN BILSTM-CRF
  • 相关文献

参考文献4

二级参考文献20

共引文献25

同被引文献6

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部