期刊文献+

自适应标记关联与实例关联诱导的缺失多视图弱标记学习

Adaptive label correlation and instance correlation guided incomplete multiview weak label learning
下载PDF
导出
摘要 针对多视图多标记学习中视图不完整和标记不完整问题,提出一种自适应标记关联与实例关联诱导的缺失多视图弱标记学习模型。模型假设样本各视图特征基于一个共享表示,通过不同映射得到。首先通过嵌入指示矩阵进行矩阵分解,充分利用已有的不完整多视图弱标记数据,然后引入图论中学习标准拉普拉斯矩阵的技术来刻画标记关联关系、实例关联关系,从而在模型里嵌入流形正则化思想,使学到的潜在共享表示以及分类器更加合理,最后在4个多视图多标记数据集上实验。实验结果表明,所提方法能够有效解决不完整多视图弱标记学习问题。 Focusing on the problem of incomplete view and label in multiview multilabel learning,the paper proposes a model called adaptive label correlation and instance correlation guided incomplete multiview weak label learning.The model assumes each view of the instance is obtained from a common representation through different mappings.Firstly,matrix factorization is used by embedding the indicator matrix to make full use of the existing incomplete multiview weak label data and then introduces the technology of learning the standard Laplacian matrix in graph theory to describe the label correlation and instance correlation.Therefore,embedding manifold regularization in the model to make the learned common representation and classifier more reasonable.Finally,four multiview multilabel datasets were conducted in a series of experiments.The experimental results show that the proposed model can solve the task of incomplete multiview weak label learning effectively.
作者 查思明 鲍庆森 骆健 陈蕾 ZHA Siming;BAO Qingsen;LUO Jian;CHEN Lei(School of Computer Science,Nanjing University of Post and Telecommunication,Nanjing 210003,China;Jiangsu Key Laboratory of Big data Security&Intelligent Processing,Nanjing University of Post and Telecommunications,Nanjing 210003,China)
出处 《智能系统学报》 CSCD 北大核心 2022年第4期670-679,共10页 CAAI Transactions on Intelligent Systems
基金 国家自然科学基金项目(61872190).
关键词 多视图学习 多标记学习 图学习 流形正则化 弱监督学习 矩阵分解 标记缺失 视图缺失 multi-view learning multi-label learning graph learning manifold regularization weakly supervised learning matrix factorization missing labels missing views
  • 相关文献

参考文献2

二级参考文献6

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部