期刊文献+

PMC模型下星图的g-好邻局部诊断度

The g-Good-Neighbor Local Diagnosability of Star Graphs under the PMC Model
下载PDF
导出
摘要 故障诊断度对于多处理系统的可靠性至关重要,是多处理器系统互连网络能够诊断出的最大故障点的数量。研究表明,系统的诊断度总小于其最小度,然而这严重地低估了系统的诊断能力。2019年,Yin和Liang提出了g-好邻局部诊断度的定义,它可以表征系统在g-好邻条件下的局部故障诊断能力。文章证明了PMC模型下星图S_(n)的每个结点的g-好邻局部诊断度为(n-g)(g+1)!-1,其中0≤g≤n-2,n≥4.根据诊断度与局部诊断度之间的关系,可以推出星图的g-好邻诊断度。 The fault diagnosis is very important to the reliability of the multiprocessing systems.It is the maximum number of fault vertices that can be diagnosed by the interconnection network of multiprocessor systems.Studies have shown that the system’s diagnosability is always less than its minimum degree,but this seriously underestimates the system’s diagnostic capability.In 2019,Yin and Liang proposed the definition of g-good-neighbor local diagnosability,which can characterize the local fault diagnosis ability of the system under g-good-neighbor conditions.This paper shows that the g-good-neighbor local diagnosability of each node of the star graph S_(n) under the PMC model is(n-g)(g+1)!-1,where 0≤g≤n-2,n≥4.According to the relationship between diagnosability and local diagnosability,the g-good-neighbor conditional diagnosability of the star graph can be obtained.
作者 乔慧娟 原军 QIAO Hui-juan;YUAN Jun(School of Applied Sciences,Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处 《太原科技大学学报》 2022年第4期346-350,共5页 Journal of Taiyuan University of Science and Technology
基金 国家自然科学基金(61402317) 山西省自然科学基金(201901D111253)。
关键词 多处理器系统 g-好邻局部诊断度 PMC模型 星图 multiprocessor system g-good-neighbor local diagnosability PMC model star graph
  • 相关文献

参考文献1

二级参考文献10

  • 1Li T K.Cycle embedding in star graphs with edge faults.Applied Mathematics and Computation,2005,167:891-900.
  • 2Wan M,Zhang Z.A kind of conditional vertex connectivity of star graphs.Applied Mathematics Letters,2009,22:264-267.
  • 3Xu M,Hu X,Zhu Q.Edge-bipancyclicity of star graphs under edge-fault tolerant.Applied Mathematics and Computation,2006,183:972-979.
  • 4Li T K,Tan J M,Hsu L H.Hyper Hamiltonian laceability on the edge fault star graph.Information Science,2004,165(1-2):59-71.
  • 5Akers S B,Krishnamurthy B.A group-theoretic model for symmetric interconnection networks.IEEE Tran.Comput.,1999:38:555-565.
  • 6Bondy J A,Murty U S R.Graph theory with application.Macmillan,London,1976.
  • 7Cheng E,Liptak L,Shawash N.Orienting Cayley graphs generated by transposition trees.Computer & mathematicsl with applications,2008,55:2662-2672.
  • 8Cheng E,Lipman M,Liptak L.Strong structural properties of unidirectional star graphs.Discrete Applied Mathematics.2008,5:1-11.
  • 9Fu J.Conditional fault-tolerant hamiltonicity of star graphs.Parallel Computing,2007,33:488-496.
  • 10Lakshmivarahan S,Jwo J,Dhall S K.Symmetry in interconnection networks based on Cayley graphs of permutation groups:a survey.Parallel Comput.,19:361-407.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部