期刊文献+

Complex Network Formation and Analysis of Online Social Media Systems

下载PDF
导出
摘要 To discover and identify the influential nodes in any complex network has been an important issue.It is a significant factor in order to control over the network.Through control on a network,any information can be spread and stopped in a short span of time.Both targets can be achieved,since network of information can be extended and as well destroyed.So,information spread and community formation have become one of the most crucial issues in the world of SNA(Social Network Analysis).In this work,the complex network of twitter social network has been formalized and results are analyzed.For this purpose,different network metrics have been utilized.Visualization of the network is provided in its original form and then filter out(different percentages)from the network to eliminate the less impacting nodes and edges for better analysis.This network is analyzed according to different centrality measures,like edge-betweenness,betweenness centrality,closeness centrality and eigenvector centrality.Influential nodes are detected and their impact is observed on the network.The communities are analyzed in terms of network coverage considering theMinimum Spanning Tree,shortest path distribution and network diameter.It is found that these are the very effective ways to find influential and central nodes from such big social networks like Facebook,Instagram,Twitter,LinkedIn,etc.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第3期1737-1750,共14页 工程与科学中的计算机建模(英文)
  • 相关文献

参考文献2

二级参考文献146

  • 1陈勇,胡爱群,胡啸.通信网中节点重要性的评价方法[J].通信学报,2004,25(8):129-134. 被引量:89
  • 2周涛,傅忠谦,牛永伟,王达,曾燕,汪秉宏,周佩玲.复杂网络上传播动力学研究综述[J].自然科学进展,2005,15(5):513-518. 被引量:72
  • 3ZHOU Tao,FU Zhongqian,WANG Binghong.Epidemic dynamics on complex networks[J].Progress in Natural Science:Materials International,2006,16(5):452-457. 被引量:36
  • 4谭跃进,吴俊,邓宏钟.复杂网络中节点重要度评估的节点收缩方法[J].系统工程理论与实践,2006,26(11):79-83. 被引量:257
  • 5赫南,李德毅,淦文燕,朱熙.复杂网络中重要性节点发掘综述[J].计算机科学,2007,34(12):1-5. 被引量:135
  • 6Aiello L M, Barrat A, Schifanella R, et al. Friendship prediction and homophily in social media. ACM Trans Web, 2012, 6: 9.
  • 7Mori J, Kajikawa Y, Kashima H, et al. Machine learning approach for finding business partners and building reciprocal relationships. Expert Syst Appl, 2012, 39: 10402-10407.
  • 8Wu S, Sun J, Tang J. Patent partner recommendation in enterprise social networks. In: Proceedings of the 6th ACM International Conference on Web Search and Data Mining (WSDM'13), Rome, 2013. 43-52.
  • 9Akcora C G, Carminati B, Ferrari E. Network and profile based measures for user similarities on social networks. In: Proceedings of the 12th IEEE International Conference on Information Reuse and Integration, Las Vegas, 2011. 292-298.
  • 10Tang J, Wu S, Sun J M, et al. Cross-domain collaboration recommendation. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD'12), Beijing, 2012. 1285-1293.

共引文献327

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部