摘要
An improved model to calculate the length of the mixing chamber of the ejector was proposed on the basis of the Fano flow model,and a method to optimize the structures of the mixing chamber and diffuser of the ejector was put forward.The accuracy of the model was verified by comparing the theoretical results calculated using the model to experimental data reported in literature.Variations in the length of the mixing chamber L_(m) and length of the diffuser L_(d) with respect to variations in the outlet temperature of the ejector T_(c),outlet pressure of the ejector p_(c),and the expansion ratio of the pressure of the primary flow to that of the secondary flow p_(g)/p_(e) were investigated.Moreover,variations in L_(m) and L_(d) with respect to variations in the ratio of the diameter of the throat of the motive nozzle to the diameter of the mixing chamber d_(g0)/d_(c3) and ratio of the outlet diameter of the diffuser to the diameter of themixing chamber d_(c)/d_(c3) were investigated.The distribution of flow fields in the ejector was simulated.Increasing L_(m) and d_(c3) reduced T_(c) and p_(c).Moreover,reducing p_(g)/p_(e) or d_(g0)/d_(c3) reduced T_(c) and p_(c).The length of the mixed section L_(m2),which was determined on the basis of the Fano flow model,increased as pg increased and decreased as d_(c3) increased.The mixing length L_(m1),which was considered the primary flow expansion,showed the opposite trend with that of L_(m2).Moreover,Ld increased as p_(g)/p_(e) and d_(c)/d_(c3) increased.When the value of d_(c) was 1.8 to 2.0 times as high as that of dc3,the semi-cone angle of the diffuser ranged between 6°and 12°.At a constant dc/dc3,decreasing T_(c) and pc increased Ld.