期刊文献+

Geometric grid network and third-order compact scheme for solving nonlinear variable coefficients 3D elliptic PDEs

原文传递
导出
摘要 By using nonuniform(geometric)grid network,a new high-order finite-difference compact scheme has been obtained for the numerical solution of three-space dimensions partial differential equations of elliptic type.Single cell discretization to the elliptic equation makes it easier to compute and exhibit stability of the numerical solutions.The monotone and irreducible property of the Jacobian matrix to the system of difference equations analyses the converging behavior of the numerical solution values.As an experiment,applications of the compact scheme to Schr¨odinger equations,sine-Gordon equations,elliptic Allen–Cahn equation and Poisson’s equation have been presented with root mean squared errors of exact and approximate solution values.The results corroborate the reliability and efficiency of the scheme.
出处 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2018年第6期72-99,共28页 建模、仿真和科学计算国际期刊(英文)
基金 Science and Engineering Research Board(DST,Govt.of India)Grant No.SR/FTP/MS-020/2011 Chinese Academy of Sciences President’s International Fellowship Initiative,Grant No.2015PM034。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部