摘要
By using nonuniform(geometric)grid network,a new high-order finite-difference compact scheme has been obtained for the numerical solution of three-space dimensions partial differential equations of elliptic type.Single cell discretization to the elliptic equation makes it easier to compute and exhibit stability of the numerical solutions.The monotone and irreducible property of the Jacobian matrix to the system of difference equations analyses the converging behavior of the numerical solution values.As an experiment,applications of the compact scheme to Schr¨odinger equations,sine-Gordon equations,elliptic Allen–Cahn equation and Poisson’s equation have been presented with root mean squared errors of exact and approximate solution values.The results corroborate the reliability and efficiency of the scheme.
基金
Science and Engineering Research Board(DST,Govt.of India)Grant No.SR/FTP/MS-020/2011
Chinese Academy of Sciences President’s International Fellowship Initiative,Grant No.2015PM034。