期刊文献+

基于LSTM车速预测的在线优化能量管理策略研究 被引量:1

Research on Online Optimization Energy Management Strategy Based on LSTM Velocity Prediction
原文传递
导出
摘要 为充分挖掘48 V混合动力汽车的节油潜力,提出了基于长短期记忆神经网络(LSTM)车速预测的混合动力汽车在线优化能量管理策略。首先,引入LSTM建立了车速预测模型,并综合考虑模型输入、输出序列长度对预测精度的影响,实现对车速的准确预测;然后,为了实现能量管理的在线最优化并提高控制策略的实时性,提出了采用快速动态规划算法的预测控制策略(FDPS);最后,分别以标准循环工况WTVC和实车工况进行测试,验证了所提策略的有效性。研究结果表明,相比于径向基神经网络(RBF)预测模型,所建立的LSTM的车速预测模型可提高29.06%-35.31%预测精度;在WTVC工况和实车工况下,所提出的FDPS策略可使燃油经济性相比于常用的规则策略(RB)分别提高5.62%和12.86%,计算时间相比于传统的预测控制策略(MPC-DP)缩短65.84%以上。 In order to fully tap the fuel-saving potential of 48 V hybrid electric vehicles, an online optimization energy management strategy for hybrid electric vehicles based on long short-term memory(LSTM) neural network velocity prediction is proposed. First, a velocity prediction model based on LSTM is established, and the influence of model input and output sequence length on prediction accuracy is comprehensively considered. Then, in order to optimize energy management online and improve the real-time performance of control strategies and realize online applications, a fast dynamic programming algorithm is proposed to solve the predictive energy management optimization problem. Finally, the standard vehicle driving cycle WTVC and the collected vehicle driving cycle are tested to verify the effectiveness of the strategy proposed in this paper. The research results show that the proposed LSTM-based velocity prediction model has an accuracy improvement of 29.06%~35.31% compared to the radial basis function(RBF) neural network prediction model. At the same time, the proposed online optimization energy management strategy has a fuel-saving rate improvement of 5.62% and 12.86%compared with the rule-based(RB) strategy under the test cycles and the calculation time is shortened more than 65.84% compared with tradition predictive control strategy(MPC-DP).
出处 《机电一体化》 2022年第2期37-48,共12页 Mechatronics
基金 国家自然科学基金资助项目(51875339)。
关键词 48V混合动力汽车 长短期记忆神经网络 预测性能量管理策略 快速动态规划 48V hybrid electric vehicles long short-term memory network predictive energy management strategy fast dynamic programming
  • 相关文献

参考文献5

二级参考文献132

  • 1毛永志,其鲁,吴明,菅刚,安平,娄述德.锰酸锂正极锂离子二次电池纯电动汽车的研制[J].北京大学学报(自然科学版),2006,42(S1):77-82. 被引量:2
  • 2赵子亮,刘东秦,刘明辉,李骏,王庆年.并联混合动力汽车控制策略与仿真分析研究[J].机械工程学报,2005,41(12):13-18. 被引量:28
  • 3NEWMAN J, TIEDEMANN W.Porous-electrode theory with battery applications[J]. AIChE J, 1975,21(1 ):25-41.
  • 4DOYLE M,FULLER T,NEWMAN J,Modeling ofgalvanostatic charge and discharge of the lithium/polymer/insertion cell[J]. J Electrochern Soc, 1993, 140:1526.
  • 5DOYLE M, NEWMAN J. Comparison of modeling predictions with experimental data fi-om plastic lithium ion cells [J]. J Electrochem Soc, 1996, 143:1890.
  • 6ARORA P, DOYLE M. Comparison between computer simulations and experimental data for high-rate discharges of plastic lithium-ion batteries[J]. Journal of Power Sources, 2000,88:219-231.
  • 7DARLING R, NEWMAN J, Modeling a porous intercalation elec- trode withtwo characteristic particle sizes [J]. J Electrochem Soc, 1997,144:4201.
  • 8NAGARAJAN G S,VAN ZEE J W.A Mathematical model for intercalation electrode behavior I. Effect of particle-size distribution on discharge capacity[J]. J Electrocbem Soc,1998,145:771.
  • 9ONG I J, NEWMAN J.Double-layer capacitance in a dual lithium ion insertion cell[J]. Journal of the Electrochemical Society, 1999, 146 (12) :4360-4365.
  • 10SANTHANAGOPALAN S, GUO Q, RAMADASS P, et al. Review of models for predicting the cycling per-formance of lithium ion batteries[J]. Journal of Power Sources,2006,156: 620-628.

共引文献127

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部