期刊文献+

Rotordynamic characteristics prediction for scallop damper seals using computational fluid dynamics 被引量:1

原文传递
导出
摘要 Enhancing damping characteristic is one of the effective methods to solve the instability problem of the rotor system.The three-dimensional numerical analysis model of scallop damper seal was established,and the effects of inlet pressures,preswirl ratios,rotational speeds,interlaced angles and seal cavity depths on the rotordynamic characteristics of scallop damper seal were studied based on dynamic mesh method and multi-frequencies elliptic whirling model.Results show that the direct stiffness of the scallop damper seal increases with decreasing inlet pressure and increasing rotational speed and cavity depth.When the seal cavity is interlaced by a certain angle,which shows positive direct stiffness.The effective damping of the scallop damper seal increases with the increasing inlet pressure,the decreasing preswirl ratio and the rotational speed and cavity depth.There exists an optimal interlaced angle to maximize the effective damping and the system stability.The leakage of the scallop damper seal is significantly reduced with decreasing inlet pressure.The preswirl will reduce the leakage flowrate,and the rotational speed has a slight effect on the leakage performance.The leakage of the scallop damper seal decreases with increasing seal cavity depth.
出处 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第8期92-106,共15页 中国航空学报(英文版)
基金 co-supported by the National Natural Science Foundation of China(No.51875361) the Natural Science Foundation of Shanghai,China(No.20ZR1439200)。
  • 相关文献

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部