期刊文献+

盾构隧道环向开挖面破坏机制及剪胀效应研究 被引量:4

Failure mechanism of shield tunnel circumferential excavation face and the influence of the dilatancy effect on the tunnel stability
下载PDF
导出
摘要 采用刚性滑块构建两种圆形隧道失稳环向开挖面破坏模式,利用编制的非线性规划程序求解隧道失稳环向开挖面支护力系数σT/c(σT为均布支护荷载,c为有效黏聚力)最优上限解及地层破坏模式,揭示地层参数对隧道稳定性的影响,提出简单实用的极限支护力简化公式。研究结果表明:不排水条件下,当隧道埋深比H/D(H为埋深,D为隧道直径)和重度系数γD/c(γ为重度)较小时,破坏区域主要集中在隧道中上部,随着H/D和γD/c增大,滑移线起始位置沿着隧道轮廓逐渐向隧道底部扩展,破坏区域向水平方向扩展。排水条件下,地层破坏模式主要有3种。当内摩擦角φ和γD/c较大时,随着剪胀系数的减小,极限支护力和地层破坏范围变化较大,甚至可能引起破坏模式的改变。针对不同深度提出的极限支护力简化公式可快速获得隧道环向开挖面极限支护力。 Rigid sliding blocks are used to construct two failure modes of the tunnel’s circumferential excavation surface of circular tunnel. The compiled nonlinear programming program is used to solve the optimal upper bound solution of the support force coefficient σT/c(σT is uniformly distributed support load and c is the effective cohesion) and the stratum failure mode so as to reveal the influences of stratum parameters on tunnel stability. A simple and practical simplified formula for the ultimate support force of the tunnel’s circumferential excavation surface is proposed. For undrained condition, the failure region is mainly concentrated in the upper part of the tunnel when the tunnel depth ratio H/D(H is the buried depth and D is the tunnel diameter) and the gravity coefficient γD/c(γ is unit weight) are small. With the increase of H/D and γD/c, the starting position of the slip line gradually expands to the bottom of the tunnel along the tunnel contour, and the failure region expands to the horizontal direction. For drainage conditions, there are three main stratum failure modes. When the internal friction angle φ and γD/c are large, with the decrease of the dilatancy coefficient, the ultimate supporting force increases significantly, and the range of failure region varies greatly, which may even cause a change in the failure mode. The ultimate supporting force of the tunnel circumferential excavation surface can be quickly obtained through the proposed simplified formulas.
作者 张箭 戚瑞宇 宗晶瑶 丰土根 ZHANG Jian;QI Rui-yu;ZONG Jing-yao;FENG Tu-gen(Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering,Hohai University,Nanjing,Jiangsu 210098,China;East China Architecture Design&Research Institute Co.,Ltd.,Shanghai Underground Space&Engineering Design Institute,Shanghai 200011,China)
出处 《岩土力学》 EI CAS CSCD 北大核心 2022年第7期1833-1844,共12页 Rock and Soil Mechanics
基金 国家自然科学基金资助项目(No.51808193,No.52178386) 中央高校基本科研业务费专项资金(No.B220202016)。
关键词 盾构 刚性滑块法 破坏模式 极限支护力 非关联流动法则 shield tunnel rigid block method failure mechanism ultimate support force non-associated flow rule
  • 相关文献

参考文献8

二级参考文献91

  • 1王滨,贺可强.岩溶塌陷临界土洞的极限平衡高度公式[J].岩土力学,2006,27(3):458-462. 被引量:59
  • 2黄正荣,朱伟,梁精华,秦建设.盾构法隧道开挖面极限支护压力研究[J].土木工程学报,2006,39(10):112-116. 被引量:52
  • 3李昀,张子新,张冠军.泥水平衡盾构开挖面稳定模型试验研究[J].岩土工程学报,2007,29(7):1074-1079. 被引量:67
  • 4樗木武.隧道力学[M].北京:中国铁道出版社,1983..
  • 5Chen W F. Limit analysis and soil mechanics[M]. New York: Elsevier Scientific Publishing Company, 1975.
  • 6Soubra A H, Regenass P. Three-dimensional passive earth pressures by kinematical approach[J]. Journal of Geotechanical and Geoenvironmental Engineering, 2001, 126(11): 969-978.
  • 7Donald I, Chen Z Y. Slope stability analysis by the upper bound approach: fundamentals and methods[J]. Canadian Geotechnical Journal, 1997, 34(6): 853-851.
  • 8Wang Y J, Yin J H, Chen Z Y. Calculation of bearing capacity of a strip footing using an upper bound method[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2001, 25(8): 841-851.
  • 9Atkinson J H, Potts D M. Stability of shallow tunnel in cohesionless soil[J]. Geotechnique, 1977, 27(2): 203-215.
  • 10Davis E H, Gunn M J, Mair R J. The stability of shallow tunnel and underground openings in cohesive material[J]. Geotechnique, 1980, 30(4): 397-416.

共引文献283

同被引文献41

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部