期刊文献+

自相似性和边缘保持分解的超分辨率重建算法 被引量:2

Super-resolution reconstruction method based on self-similarity and edge-preserving decomposition
下载PDF
导出
摘要 针对目前遥感图像超分辨率重建中存在边缘细节信息重建效果不佳的问题,本文提出了—种自相似性特征和边缘特征保持分解的超分辨率重建方法。首先,为了充分利用原始低分辨率图像自身的相似性信息,通过局部自相似性重建方法得到图像的初始重建结果;然后,为进一步增加不同尺度的边缘信息,采用加权最小二乘法对初始重建结果进行多尺度边缘保持分解,并对分解的细节层进行加权线性组合;最后,通过优化计算,得到融合多尺度边缘、细节信息及局部相似性特征的超分辨率重建图像。利用多组仿真和遥感卫星图像进行对比试验。结果表明,该方法可有效提升遥感图像的边缘信息和细节信息。 In view of the poor effect of edge detail information reconstruction in remote sensing image super-resolution reconstruction,a super-resolution reconstruction method based on self similarity feature and edge feature preserving decomposition is proposed.Firstly,in order to make full use of the similarity information of the original low resolution image,the local self similarity reconstruction method is used to obtain the initial reconstruction results of the image.In order to further increase the edge information of different scales,the weighted least square method is used to decompose the initial reconstruction results,and the decomposed detail layers are weighted linear combined.Finally,the super-resolution reconstructed image integrating multi-scale edge,detail information and local similarity features is obtained through optimization calculation.The results show that this method can effectively improve the edge information and detail information of remote sensing images.
作者 郑艳 何欢 卜丽静 金鑫 ZHENG Yan;HE Huan;BU Lijing;JIN Xin(Department of Information Engineering in Surveying Mapping Science and Remote Sensing,Guangdong Polytechinc of Industry and Commerce,Guangzhou 510510,China;School of Geomatics,Liaoning Technical University,Fuxin 123000,China;College of Automation and Eletronic Information,Xiangtan University,Xiangtan 411100,China;Beijing Urban Construction Exploration&Surveying Design Research Institute Co.,Ltd.,Beijing 100101,China)
出处 《测绘通报》 CSCD 北大核心 2022年第7期54-59,共6页 Bulletin of Surveying and Mapping
基金 国家自然科学基金青年科学基金(41801294) 广东省教育厅2021年度广东省普通高校特色创新类项目(2021KTSCX207)。
关键词 自相似性 边缘保持分解 超分辨率重建 细节信息 self-similarity edge-preserving decomposition super-resolution reconstruction detail information
  • 相关文献

参考文献7

二级参考文献75

  • 1Crouse M S,Nowak R D,Baraniuk R G.Wavelet-based aignal processing using hidden Markov models[J].IEEE Transactions on Signal Preceding,1998,46(4):886-902.
  • 2Zhao Subin,Han Hua,Peng Silong.Wavelet-domain hmt-based image super-resolution[J].ICIP,2003,3(2):953-956.
  • 3Romberg J,Choi H,Baraniuk R.Bayesian tree-structured image modeling using wavelet-domain hidden-Markov models[J].IEEE Transactions on Image Processing,2001,10(7):1056-1068.
  • 4Li Feng,Jia Xiuping,Donald Fraser.Universal hmt based super tesolution for remote sensing images[C]//Proceedings of ICIP.Washington,DC..IEEE Press,2008,333-336.
  • 5Li Feng,Donald Fraser,Jia Xiuping.Wavelet domain deblurring and denoising for image resolution improvemem[C]//Proceedings of ICIP.Washington,DC:IEEE Press,2007,373-379.
  • 6Battiato S,Gallo G,Stanco F.A locally-adaptive zooming algorithm for digital images[J].Image Vision and Computing Journal,2002,20(11):805-812.
  • 7Plaziac N.Image interpolation using neural networks[J].IEEE Tronsactions on Image Processing,1999,8(11):1647-1651.
  • 8Li Xin,Orchard M T.Edge-directed prediction for lossless compression of natural images[J].IEEE Transactions on Image Processing,2001,10(6):813-817.
  • 9Li Xin,Orchard M T.New edge-directed interpolation[J].IEEE Transactions on Image Processing,2001,10 (10):1521-1527.
  • 10Mallat S.A theory for multiresolution signal dacomposition:the wavelet,representation[J].IEEE Trans.Pattern Anal.Machine Intell,1989,11(7):674-693.

共引文献224

同被引文献33

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部