期刊文献+

Hybridization of Differential Evolution and Adaptive-Network-Based Fuzzy Inference Systemin Estimation of Compression Coefficient of Plastic Clay Soil

下载PDF
导出
摘要 One of the important geotechnical parameters required for designing of the civil engineering structure is the compressibility of the soil.In this study,the main purpose is to develop a novel hybrid Machine Learning(ML)model(ANFIS-DE),which used Differential Evolution(DE)algorithm to optimize the predictive capability of Adaptive-Network-based Fuzzy Inference System(ANFIS),for estimating soil Compression coefficient(Cc)from other geotechnical parameters namelyWater Content,Void Ratio,SpecificGravity,Liquid Limit,Plastic Limit,Clay content and Depth of Soil Samples.Validation of the predictive capability of the novel model was carried out using statistical indices:Root Mean Square Error(RMSE),Mean Absolute Error(MAE),and Correlation Coefficient(R).In addition,two popular ML models namely Reduced Error Pruning Trees(REPTree)and Decision Stump(Dstump)were used for comparison.Results showed that the performance of the novel model ANFIS-DE is the best(R=0.825,MAE=0.064 and RMSE=0.094)in comparison to other models such as REPTree(R=0.7802,MAE=0.068 and RMSE=0.0988)andDstump(R=0.7325,MAE=0.0785 and RMSE=0.1036).Therefore,the ANFIS-DE model can be used as a promising tool for the correct and quick estimation of the soil Cc,which can be employed in the design and construction of civil engineering structures.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第1期149-166,共18页 工程与科学中的计算机建模(英文)
基金 Ministry of Education and Training of Vietnam,Grant No.B2020-GHA-03 the University of Transport and Communications,Hanoi,Vietnam.
  • 相关文献

参考文献1

二级参考文献3

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部