期刊文献+

Entropy-driven phase regulation of high-entropy transition metal oxide and its enhanced high-temperature microwave absorption by in-situ dual phases 被引量:1

原文传递
导出
摘要 High-temperature microwave absorbers are significant for military equipment which experiences severe aerodynamic heat.In this work,high-entropy oxide(HEO)(FexCoNiCrMn)mOn with excellent high-temperature microwave absorption is studied.Driven by the effect of entropy,the composition of the oxide can be transformed from spinel-type phase(FexCoNiCrMn)_(3)O_(4) to corundum-type phase(FexCoNiCrMn)2O3 with the increasing content of iron.Only spinel-type or corundum-type structure composes the oxide when x≤3 or x≥5.But in-situ dual phases can coexist when x equals 4 during phase transition.Interestingly,obliged to abundant heterogeneous interfaces and crystal defects in the dual-phase HEO,magnetic property,dielectric polarization,and microwave loss ability are all well enhanced.The Smith chart analysis demonstrates the impedance matching condition is well improved due to the enhanced loss ability.These findings pave a new way for the adjustment of electromagnetic properties of HEO by entropy-driven phase regulation.Meanwhile,the dual-phase absorber can achieve better than 90%absorption in 9.6-12.4 GHz at 800℃ with a thickness of 2.6 mm,a low thermal diffusivity of 0.0038 cm^(2)/s at 900℃,and excellent high-temperature stability,which indicates it’s promising as a high-temperature microwave absorber.
出处 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第21期11-21,共11页 材料科学技术(英文版)
基金 financially supported by the Shanghai Sailing Program(No.21YF1454600)。
  • 相关文献

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部