期刊文献+

基于词典模型融合的神经机器翻译 被引量:3

Neural machine translation based on dictionary model fusion
下载PDF
导出
摘要 无监督神经机器翻译仅利用大量单语数据,无需平行数据就可以训练模型,但是很难在2种语系遥远的语言间建立联系。针对此问题,提出一种新的不使用平行句对的神经机器翻译训练方法,使用一个双语词典对单语数据进行替换,在2种语言之间建立联系,同时使用词嵌入融合初始化和双编码器融合训练2种方法强化2种语言在同一语义空间的对齐效果,以提高机器翻译系统的性能。实验表明,所提方法在中-英与英-中实验中比基线无监督翻译系统的BLEU值分别提高2.39和1.29,在英-俄和英-阿等单语实验中机器翻译效果也显著提高了。 Unsupervised neural machine translation can train models using only a large amount of monolingual data without the need of parallel data,but it is difficult to establish the connection between two linguistically distant languages.To address this problem,this paper proposes a new neural machine translation training method without parallel sentence pairs.A bilingual dictionary is used to replace words in monolingual data,so as to establish the connection between the two languages.Meanwhile,word embedding fusion initialization and dual-encoder fusion training are used to enhance the alignment of the two languages in the same semantic space,in order to improve the performance of the machine translation system.Experiments show that,compared with other unsupervised models,our method can improve the BLEU values by 2.39 and 1.29 over the baseline system on the Chinese-English and English-Chinese translation tasks,and also achieve good results on the English-Russian and English-Arabic translation tasks with monolingual data.
作者 王煦 贾浩 季佰军 段湘煜 WANG Xu;JIA Hao;JI Bai-jun;DUAN Xiang-yu(Natural Language Processing Laboratory,Soochow University,Suzhou 215006,China)
出处 《计算机工程与科学》 CSCD 北大核心 2022年第8期1481-1487,共7页 Computer Engineering & Science
基金 国家自然科学基金(61673289)。
关键词 神经网络 神经机器翻译 词典 无监督 neural network neural machine translation dictionary unsupervised
  • 相关文献

参考文献5

二级参考文献44

  • 1俞士汶等.机器翻译译文质量自动评估系统[A]..中国中文信息学会1991年会论文集[C].,.314—319.
  • 2Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra, Fredrick Jelinek, John D. Lafferty, Robert L. Mercer, Paul S. Roossin, A Statistical Approach to Machine Translation [J],Computational Linguistics, 1990.
  • 3Peter. F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, Robert L. Mercer, The Mathematics of Statistical Machine Translation: Parameter Estimation [J], Computational Linguiatics, 19,(2), 1993.
  • 4F. J. Och, C. Tillmann, and H. Ney. Improved alignment models for statistical machine translation[A]. In Proc. of the Joint SIGDAT Conf. On Empirical Methods in Natural Language Processing and Very Large Corpora, pages 20-28, University of Maryland, College Park, MD, June 1999.
  • 5Franz Josef Och, Hermann Ney. What Can Machine Translation Learn from Speech Recognition? [A]In: proceedings of MT 2001 Workshop: Towards a Road Map for MT, 26-31, Santiago de Compostels,Spain, September 2001.
  • 6Franz Josef Och, Hermann Ney, Discriminative Training and Maximum Entropy Models for Statistical Machine Translation [A], ACL2002.
  • 7K. A. Papineni, S. Roukos, and R. T. Ward. Feature-based language understanding[A]. In European Conf. on Speech Communication and Technology, 1435-1438, Rhodes, Greece, September,1997.
  • 8K. A. Papineni, S. Roukos, and R. T. Ward. Maximum likelihood and discriminative training of direct translation models [A] In Proc. Int. Conf. on Accoustics, Speech, and Signal Processing,pages,189-192, Seattle, WA, May, 1998.
  • 9Kishore Papineni, Salim Roukos, Todd Ward, Wei-Jing Zhu, Bleu: a Method for Automatic Evaluation of Machine Translation [R], IBM Research, RC22176 (W0109-022) September 17, 2001.
  • 10Ye-Yi Wang, Grammar Inference and Statistical Machine Translation [D], Ph.D Thesis, Carnegie Mellon University, 1998.

共引文献272

同被引文献29

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部