摘要
【目的】针对用户消费心理画像方法较少的问题,以三层次体验理论为依据,从用户评论中挖掘用户的消费心理和消费偏好。【方法】建立体验层次-产品特征-方面词之间的映射关系,然后利用方面词提取技术,从用户评论中挖掘用户对不同体验层次的关注度,将用户分为本能偏好、行为偏好、反思偏好三种类型,最后使用基于深度学习的方面词情感分析技术计算得到用户对于产品的喜爱度,进一步分析不同类型用户的特点。【结果】基于90余万条京东手机评论数据进行应用分析,获得三类消费偏好用户群,其中本能偏好用户占比41.60%,高于行为偏好用户(占比33.01%)和反思偏好用户(占比25.39%),还从手机品牌以及价位等方面分析了三类用户的消费特点。【局限】实验仅以京东手机评论数据集为例,未来可使用多种产品、多个平台的评论数据集,以获得更丰富完善的用户画像与消费偏好。【结论】本文的用户画像方法可以较好地表达不同类型用户的消费偏好。
[Objective] This paper proposes a new method to explore consumer psychology and their preferences based on online comments, aiming to address the difficulties of drawing personality-based consumer portraits.[Methods] Firstly, we mapped relationship among the experience levels, product features and aspect words. Then,we extracted aspect words from user comments to examine their attentions at different experience levels. Third,we categorized users with their instinctual, behavioral, and reflective preferences. Finally, we utilized deep learning-based aspect sentiment analysis technology to examine user’s preferences for products. [Results] We evaluated our new model with more than 900 000 reviews on mobile phones from JD. com. Among them, users with instinctual preferences accounted for 41.60%, which was higher than behavioral preferences(33.01%) and reflective preferences(25.39%). We also analyzed their purchasing behaviors from the perspectives of brands and prices. [Limitations] We only collected review data on mobile phones sold by JD. com. More products and platforms need to be examined with our new model in the future. [Conclusions] The new model for creating user portraits can identify the preferences of different groups of consumers.
作者
肖寒琼
张馨遇
肖宇晗
林慧苹
Xiao Hanqiong;Zhang Xinyu;Xiao Yuhan;Lin Huiping(School of Software and Microelectronics,Peking University,Beijing 102600,China)
出处
《数据分析与知识发现》
CSSCI
CSCD
北大核心
2022年第6期22-31,共10页
Data Analysis and Knowledge Discovery
基金
国家重点研发计划(项目编号:2018YFB1702900)的研究成果之一。
关键词
三层次体验理论
消费心理
用户画像
产品特征
方面词
情感分析
Three Level Experience Theory
Consumer Psychology
User Portrait
Product Features
Aspect Words
Sentiment Analysis