摘要
利用矩阵的H-表示方法研究Sylvester矩阵方程组的Hankel解和Toeplitz解。根据Hankel矩阵和Toeplitz矩阵的结构特点,利用H-表示将矩阵方程组转化为向量值方程,进而给出矩阵方程组在Hankel及Toeplitz约束下相容的充要条件及通解表达式,通过数值算例,说明H-表示方法的有效性和优越性。最后给出利用本文方法求解特殊时不变耦合矩阵方程Toeplitz解的例子。
Using the H-representation of matrix,we study the Hankel solution and Toeplitz solution of Sylvester matrix equations.According to the structural characteristics of Hankel matrix and Toeplitz matrix,the matrix equations are transformed into vector-valued equation by using H-representation,and then the necessary and sufficient conditions for the compatibility of matrix equations under Hankel and Toeplitz constraints and the general solutions expression are given.Numerical examples show the effectiveness and superiority of H-representation method.Finally,an example for solving Toeplitz solution of special time-invariant coupled matrix equations by using the method proposed in the paper is given.
作者
刘志红
李莹
丁文旭
樊学玲
LIU Zhihong;LI Ying;DING Wenxv;FAN Xueling(School of Mathematical Sciences,Liaocheng University,Liaocheng 252059,China)
出处
《聊城大学学报(自然科学版)》
2022年第4期18-25,共8页
Journal of Liaocheng University:Natural Science Edition
基金
国家自然科学基金项目(62176112)
山东省自然科学基金项目(ZR2020MA053)
聊城大学科研基金项目(318011921)资助。