期刊文献+

深度卷积神经网络在品牌服装图像检索中的应用 被引量:3

Application of Deep Convolutional Neural Network in Image Retrieval of Brand Clothing
下载PDF
导出
摘要 品牌服装图像检索目的是根据用户需求输入图像从而直接查找出与目标图片相似的服装,以满足客户查找需求。服装图像检索步骤分两步,首先利用卷积神经网络模型提取数据集图像特征并保存到数据库,然后提取待检索图像的特征向量并与保存好的的图像特征逐一进行相似度匹配。从深度卷积神经网络模型设计出发,通过卷积核删减方法改进VGG16网络模型并对比分析Inception_v3和原VGG16模型结构,通过实验验证他们的性能表现。实验表明,在获取的品牌服装数据集上,改进的modify_vgg准确率达81.7%,比原VGG16模型准确率提高1.4%,比Inception_v3模型提高3.5%。 The purpose of brand clothing image retrieval is to directly identify the clothing that is similar to the target image according to the user′s requirements.The process of apparel image retrieval consists of two steps.Firstly,the image features of the dataset were extracted by the convolution neural network model and saved to the database,then the features of the image to be retrieved were extracted and the similarity between the features of the image to be retrieved and the saved image features was matched.Improve the VGG16 model by pruning the convolutional kernel from the design of deep convolutional neural network model,analyzed the structure of Inception_v3 and the original VGG16 model,and verified its performance through experiments.The experiments show that the accuracy of the improved modify_vgg model is 81.7%on the brand clothing dataset,which is 1.4%higher than the original VGG16 model,and 3.5%higher than that of the Inception_v3 model.
作者 董访访 张明 邓星 DONG Fang-fang;ZHANG Ming;DENG Xing(College of Computer Science,Jiangsu University of Science and Technology,Zhenjiang 212100,China)
出处 《软件导刊》 2022年第8期144-149,共6页 Software Guide
基金 国家自然科学基金青年科学基金项目(61902158)。
关键词 卷积神经网络 图像检索 特征提取 VGG16 Inception_v3 convolutional neural network image retrieval feature extraction VGG16 Inception_v3
  • 相关文献

参考文献6

二级参考文献134

  • 1HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets [ J ]. Neural Computation, 2006,18 ( 7 ) : 1527- 1554.
  • 2BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Advances in Neural Information Pro- cessing Systems. Cambridge:MIT Press,2007:153-160.
  • 3VINCENT P, LAROCHELLE H, BENBIO Y, et al. Extracting and composing robust features with denoising autoencoders [ C ]//Proc of the 25th International Conference on Machine [.earning. New York: ACM Press ,2008 : 1096-1103.
  • 4LAROCHELLE H, BENGIO Y, LOURADOUR J, et al. Exploring strategies for training deep neural networks[ J]. Journal of Machine Learning Research,2009,10 (12) : 1-40.
  • 5TAYLOR G, HINTON G E. Factored conditional restricted Bohzmann machines for modeling motion style [ C ]//Proc of the 26th Annual In- ternational Conference on Machine Learning. New York:ACM Press, 2009 : 1025-1032.
  • 6SALAKHUTDINOV R, HINTON G E. Deep Boltzmann machines [ C ]//Proe of the 12th International Conference on Artificial Intelli- gence and Statistics. 2009:448-455.
  • 7TAYLOR G, SIGAL L, FLEET D J, et al. Dynamical binary latent variable models for 3D human pose tracking[ C ]//Proe of IEEE Con- ferenee on Computer Vision and Pattern Recognition. 2010:631-638.
  • 8JARRETY K, KAVUKCUOGLU K, RANZATO M, et al. What is the best multi-stage architecture for object recognition? [ C ]//Pine of the 12th International Conference on Computer Vision. 2009:2146-2153.
  • 9LEE H, GROSSE R, RANGANATH R, et al. Convolutional deep belief networks for scalable unsupervised learning of hierarchical rep- resentations [ C ]//Proc of the 26th International Conference on Ma- chine Learning. New York : ACM Press ,2009:609-616.
  • 10LEE H, PHAM P, LARGMAN Y, et at. Unsupervised feature learn- ing for audio classification using convolutional deep belief networks [C ]//Advances in Neural Information Processing Systems. Cam- bridge : MIT Press ,2009 : 1096-1104.

共引文献2056

同被引文献28

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部