期刊文献+

基于贝叶斯网络的组网参数自动规划方法

Automatic Planning of Networking Parameters Based on Bayesian Network
下载PDF
导出
摘要 针对战场机动通信网络快速规划需求,提出了一种基于贝叶斯网络的组网参数自动规划方法。通过对传统二进制粒子群优化算法在粒子群初始化和算法搜索空间等方面进行改进,实现了组网参数贝叶斯网络结构的快速学习,利用贝叶斯网络实现组网参数的自动规划,以超短波电台网络为仿真模型,对算法进行了仿真验证。结果表明,该算法在超短波组网参数规划中具有较高的准确率,能够满足战场机动通信网络快速规划需求。 Aiming at the rapid planning requirements of manoeuvring communication network in the battlefield,the automatic planning method of networking parameters based on Bayesian network is proposed.Firstly,the traditional binary particle swarm optimization algorithm is improved in particle swarm initialization and algorithm search space,in order to realize the rapid Bayesian network learning of networking parameters.Secondly,the automatic planning of networking parameters is realized based on Bayesian network.Finally,the simulation verification of the algorithm is done by using the ultra-short wave radio network as a simulation model.The results show that the algorithm is of great accuracy in ultra-short wave networking parameters planning and meets the needs of rapid planning of manoeuvring communication network in the battlefield.
作者 冀云刚 霍永华 JI Yungang;HUO Yonghua(The 54th Research Institute of CETC,Shijiazhuang 050081,China)
出处 《计算机与网络》 2022年第13期43-47,共5页 Computer & Network
关键词 网络规划 贝叶斯网络 粒子群优化 network planning Bayesian network particle swarm optimization
  • 相关文献

参考文献6

二级参考文献19

  • 1胡恒杰,赵旭凇,徐德平,张华,张炎炎.TD-LTE无线网络规划若干问题探讨[J].电信工程技术与标准化,2010,23(11):40-45. 被引量:8
  • 2赫然,王永吉,王青,周津慧,胡陈勇.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044. 被引量:134
  • 3胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868. 被引量:334
  • 4Pietquin O, Dutoit T. A Probabilitic Framework for Dialog Simulation and Optimal Strategy Learning[ J ]. IEEE Trans on Speech and Audio Processing, 2005,14( 2): 589-599.
  • 5Kennedy J, Eberhart R C. Particle Swarm Opimization [ C] //IEEE International Conference on Neural Network, 1995: 1942-1948.
  • 6Kennedy J, Eberhart R C. A Discrete Binary Version of the Particle Swarm Algorithm[ C]//Proc IEEE Int Conf System Man Cy- bericle, 1997 : 4104-4109.
  • 7Pampara G, Franken N, Engelbrecht A P. Combining Particle Swarm Optimization with Angle Modulation to Solve Binary Prob- lems [ C ]//IEEE Congress Evolution Computation, 2005:89-96.
  • 8Heng X C, Qin Z, Wang X H, Shao L P. Research on Learning Bayesian Networks by Particle Swarm Optimization[J]. Infor- mation Technology, 2006, 5(3): 540-545.
  • 9Heng X C, Qin Z, Tian L, Shao L P. Learning Bayesian Network Structures with Discrete Particle Swarm Optimization Algo- rithm[ C ] //IEEE Symposium on Foundation of Computational Intelligence 2007:47-52.
  • 10Heng X C, Qin Z, Tian L, Shao L P. Research on Structure Learning of Dynamic Bayesian Networks by Particle Swarm Optimi- zation[ C] //IEEE Symposium on Artificial Life, 2007:85-91.

共引文献359

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部