摘要
针对传统的滚动轴承故障诊断方法依赖人工特征提取和专家经验,难以自适应提取强噪声信号微弱故障特征的问题,提出一种直方图均衡化和卷积神经网络(CNN)相结合的智能诊断方法。首先,将传感器采集到的一维振动信号通过横向插值法转换为便于模型识别的二维振动图像,利用直方图均衡化技术拉伸像素之间灰度值差别的动态范围,突出纹理细节和对比度,以增强周期性故障特征;然后构建深层CNN模型,采用优化技术降低模型参数量,逐层学习监测数据与故障状态之间的复杂映射关系。实验结果表明该方法具有高达99%以上的准确率,对不同负载下的故障信号仍具有较高的识别精度和泛化能力。
To solve the problem that traditional fault diagnosis methods of rolling bearing rely on artificial feature extraction and expert experience,and it is difficult to self-adapt to extract weak fault features of strong noise signals,an intelligent diagnosis method combining histogram equalization and convolutional neural network(CNN)is proposed.First,the one-dimensional vibration signal collected by the sensor is transformed into a two-dimensional vibration image that is easy to be recognized by the model through Transversal interpolation.Histogram equalization technology is used to stretch the dynamic range of gray value difference between pixels,highlight texture details and contrast,and enhance periodic fault characteristics.Then,a deep CNN model is constructed,and the optimization technology is used to reduce the model parameters,and the complex mapping relationship between monitoring data and fault state is learned layer by layer.The experimental results show that this method has a high accuracy of more than 99%,and still has a high identification accuracy and generalization ability for fault signals under different loads.
作者
陈剑
孙太华
黄凯旋
阚东
曹昆明
张磊
程明
CHEN Jian;SUN Tai-hua;HUANG Kai-xuan;KAN Dong;CAO Kun-ming;ZHANG Lei;CHENG Ming(Institute of Sound and Vibration Research,Hefei University of Technology,Hefei,Anhui 230009,China;Automotive NVH Engineering&Technology Research Center Anhui Province,Hefei,Anhui 230009,China)
出处
《计量学报》
CSCD
北大核心
2022年第7期907-912,共6页
Acta Metrologica Sinica
基金
国家自然科学基金青年基金(11604070)
安徽省重大科技项目(17030901049)。
关键词
计量学
滚动轴承
直方图均衡化
卷积神经网络
故障诊断
metrology
rolling bearing
histogram equalization
convolutional neural network
fault diagnosis