期刊文献+

An Approach for Quantifying the Influence of Seepage Dissolution on Seismic Performance of Concrete Dams 被引量:1

下载PDF
导出
摘要 Many concrete dams seriously suffer from long-term seepage dissolution,and the induced mechanical property deterioration of concrete may significantly affect the structural performance,especially the seismic safety.An approach is presented in this paper to quantify the influence of seepage dissolution on seismic performance of concrete dams.To connect laboratory test with numerical simulation,dissolution tests are conducted for concrete specimens and using the cumulative relative leached calcium as an aging index,a deterioration model is established to predict the mechanical property of leached concrete in the first step.A coupled seepage-calcium dissolutionmigrationmodel containing two calculation modes is proposed to simulate the spatially non-uniformdeterioration of concrete dams.Based on the simulated state of a roller compacted concrete dam subjected to 100 years of seepage dissolution,seismic responses of the damare subsequently analyzed.During which the nonlinear cracking of concrete,the radiation damping of the far-field foundation is considered.Research results show that seepage dissolution will seriously weaken the seismic safety of concrete dams because of the dissolution-induced decrease of effective thickness of the dam body.The upstream surface,dam toe and gallery wall suffer from a large degree of dissolution,whereas it is minimal and basically the same inside the dam body,at a degree of 0.19%within 100 years.The horizontal displacements of dam crest under the design static load and fortification against earthquake increase by 6.9%and 21.9%,respectively,and the dissolution-induced seismic cracking leads to the failure of dam anti-seepage system.This study can provide engineers with a reference basis for reinforcement decision of old concrete dams.
出处 《Computer Modeling in Engineering & Sciences》 SCIE EI 2022年第4期97-117,共21页 工程与科学中的计算机建模(英文)
基金 This work was supported by the National Natural Science Foundation of China(Grant Nos.51709021,52079120) the project funded by China Postdoctoral Science Foundation(Grant No.2020M670387) the Belt and Road Special Foundation of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(Grant No.2019nkzd03).
  • 相关文献

同被引文献23

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部