期刊文献+

基于注意力机制的海上小目标重识别方法 被引量:1

Re-identification Method of Small Target in Ocean Environment Based on Attention Mechanism
下载PDF
导出
摘要 在海上由于涉及到目标的遮挡、背景及照明等的巨大变化,小目标重识别是一项极具挑战性的计算机视觉任务。针对传统小目标识别算法泛化性差,在目标重识别中特征提取不够充分有效的问题,提出一种基于通道和空间注意力机制的目标重识别方法。首先,通过将CBAM机制嵌入到重识别模型的骨干网中,通过引入通道注意力机制和空间注意力机制,反馈了更加关键的特征信息。针对骨干输出的三维特征量,为得到更有效的信息,沿垂直进行不同比例的平均分块,从而在多粒度的情况下,从全局和局部更加全面地关注图像信息,同时利用多损失函数分别优化模型,提升模型的可区分性。最后将梯度中心化算法引入Adam优化器,提升网络模型的训练速度和泛化能力,为海上小目标重识别提供了一种新的研究思路与方法。 In ocean environment due to the huge changes involved in the occlusion,background and lighting,object re-identification is a very challenging computer vision task.Traditional small target recognition algorithms has poor generalization ability,aiming at the problem of insufficient feature extraction in object re-recognition,a object re-identification method was proposed based on channel and spatial attention mechanism.First of all,the CBAM mechanism was embeded into the backbone network of the re-identification model,which introduced the channel attention mechanism and the spatial attention mechanism to feed back more critical feature information.For the three-dimensional feature output of the backbone,in order to obtain more effective information,average partitioning of different proportions along the vertical was performed,so that in the case of multiple-granularity features,more attention could be paid to the image information from the global and local aspects,and multiple loss functions were used.The models were optimized separately to improve the distinguish-ability of the models.Finally,the gradient centralization algorithm was introduced into the Adam optimizer to improve the training speed and generalization ability of the network model.It provides a new research idea and method for target re-identification in ocean.
作者 崔海朋 姜英昌 Cui Haipeng;Jiang Yingchang(Qingdao JARI Industry Control Technology Co.,Ltd.,Qingdao,Shandong 266000,China)
出处 《机电工程技术》 2022年第7期100-103,共4页 Mechanical & Electrical Engineering Technology
关键词 深度学习 注意力机制 海上小目标 梯度中心化 deep learning attention mechanism multiple-granularity features gradient centralization
  • 相关文献

参考文献1

二级参考文献3

共引文献8

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部