期刊文献+

Cross-Language Transfer Learning-based Lhasa-Tibetan Speech Recognition

下载PDF
导出
摘要 As one of Chinese minority languages,Tibetan speech recognition technology was not researched upon as extensively as Chinese and English were until recently.This,along with the relatively small Tibetan corpus,has resulted in an unsatisfying performance of Tibetan speech recognition based on an end-to-end model.This paper aims to achieve an accurate Tibetan speech recognition using a small amount of Tibetan training data.We demonstrate effective methods of Tibetan end-to-end speech recognition via cross-language transfer learning from three aspects:modeling unit selection,transfer learning method,and source language selection.Experimental results show that the Chinese-Tibetan multi-language learning method using multilanguage character set as the modeling unit yields the best performance on Tibetan Character Error Rate(CER)at 27.3%,which is reduced by 26.1%compared to the language-specific model.And our method also achieves the 2.2%higher accuracy using less amount of data compared with the method using Tibetan multi-dialect transfer learning under the same model structure and data set.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第10期629-639,共11页 计算机、材料和连续体(英文)
基金 This work was supported by three projects.Zhao Y received the Grant with Nos.61976236 and 2020MDJC06 Bi X J received the Grant with No.20&ZD279.
  • 相关文献

参考文献4

二级参考文献88

  • 1Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 2Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 3Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 4Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 5Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].
  • 6Xing DK,Dai WY,Xue GR,Yu Y.Bridged refinement for transfer learning.In:Proc.of the Ilth European Conf.on Practice of Knowledge Discovery in Databases.Berlin:Springer-Verlag,2007.324-335.[doi:10.1007/978-3-540-74976-9_31].
  • 7Mahmud MMH.On universal transfer learning.In:Proc.of the 18th Int’l Conf.on Algorithmic Learning Theory.Sendai,2007.135-149.[doi:10,1007/978-3-540-75225-7_14].
  • 8Samarth S,Sylvian R.Cross domain knowledge transfer using structured representations.In:Proc.of the 21st Conf.on Artificial Intelligence.AAAI Press,2006.506-511.
  • 9Bel N,Koster CHA,Villegas M.Cross-Lingual text categorization.In:Proc.of the European Conf.on Digital Libraries.Berlin:Springer-Verlag,2003.126-139.[doi:10.1007/978-3-540-45175-4_13].
  • 10Zhai CX,Velivelli A,Yu B.A cross-collection mixture model for comparative text mining.In:Proc.of the 10th ACM SIGKDD Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM,2004.743-748.[doi:10.1145/1014052.1014150].

共引文献466

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部