摘要
Abnormal growth of brain tissues is the real cause of brain tumor.Strategy for the diagnosis of brain tumor at initial stages is one of the key step for saving the life of a patient.The manual segmentation of brain tumor magnetic resonance images(MRIs)takes time and results vary significantly in low-level features.To address this issue,we have proposed a ResNet-50 feature extractor depended on multilevel deep convolutional neural network(CNN)for reliable images segmentation by considering the low-level features of MRI.In this model,we have extracted features through ResNet-50 architecture and fed these feature maps to multi-level CNN model.To handle the classification process,we have collected a total number of 2043 MRI patients of normal,benign,and malignant tumor.Three model CNN,multi-level CNN,and ResNet-50 based multi-level CNN have been used for detection and classification of brain tumors.All the model results are calculated in terms of various numerical values identified as precision(P),recall(R),accuracy(Acc)and f1-score(F1-S).The obtained average results are much better as compared to already existing methods.This modified transfer learning architecture might help the radiologists and doctors as a better significant system for tumor diagnosis.
基金
Authors would like to acknowledge the support of the Deputy for Research and Innovation-Ministry of Education,Kingdom of Saudi Arabia for funding this research through a project(NU/IFC/ENT/01/014)under the institutional funding committee at Najran University,Kingdom of Saudi Arabia.