期刊文献+

Threefold Optimized Forecasting of Electricity Consumption in Higher Education Institutions

下载PDF
导出
摘要 Energy management benefits both consumers and utility companiesalike. Utility companies remain interested in identifying and reducing energywaste and theft, whereas consumers’ interest remain in lowering their energyexpenses. A large supply-demand gap of over 6 GW exists in Pakistan asreported in 2018. Reducing this gap from the supply side is an expensiveand complex task. However, efficient energy management and distributionon demand side has potential to reduce this gap economically. Electricityload forecasting models are increasingly used by energy managers in takingreal-time tactical decisions to ensure efficient use of resources. Advancementin Machine-learning (ML) technology has enabled accurate forecasting ofelectricity consumption. However, the impact of computation cost affordedby these ML models is often ignored in favour of accuracy. This studyconsiders both accuracy and computation cost as concurrently significantfactors because together they shape the technology environment as well ascreate economic impact. Thus, a three-fold optimized load forecasting modelis proposed which includes (1) application specific parameters selection, (2)impact of different dataset granularities and (3) implementation of specificdata preparation. It deploys and compares the widely used back-propagationArtificial Neural Network (ANN) and Random Forest (RF) models for theprediction of electricity consumption of buildings within a university. In addition to the temporal and historical power consumption date as input parameters, the study also embeds weather data as well as university operationalcalendars resulting in improved performance. The outcomes are indicativethat the granularity i.e. the scale of details in data, and set of reduced and fullinput parameters impact performance accuracies differently for ANN and RFmodels. Experimental results show that overall RF model performed betterboth in terms of accuracy as well as computational time for a 1-min, 15-minand 1-h dataset granularities with the mean absolute percentage error (MAPE)of 2.42, 3.70 and 4.62 in 11.1 s, 1.14 s and 0.3 s respectively, thus well suitedfor a real-time energy monitoring application.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第11期2351-2370,共20页 计算机、材料和连续体(英文)
基金 This research is funded by Neurocomputation Lab, National Center ofArtificial Intelligence, NED University of Engineering and Technology, Karachi, 75270, Pakistan(PSDP.263/2017-18).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部