期刊文献+

微生物固碳的电子供给策略研究进展 被引量:6

Electron supply strategies for microbial carbon fixation:a review
原文传递
导出
摘要 随着生物化工技术的不断发展成熟,通过改造微生物已可以实现二氧化碳、甲烷等温室气体的固定、转化和利用,而电子传递及能量供给对微生物固碳效率起着决定性的作用。本文首先分析了好氧性嗜甲烷菌、化能自养微生物等天然微生物细胞内外的直接、间接电子传递系统。在此基础上,围绕微生物固碳细胞工厂的构建,进一步介绍了基于光能、电能的人工电子供给策略及其对固碳过程中代谢通量、合成路径和供能效率的影响。最后针对微生物固碳的关键共性技术难点,简要展望了可行性的解决方案及相关应用前景。 Given the rapid development of technologies in biochemical engineering and genetic engineering,biological capture,conversion and utilization of greenhouse gases(carbon dioxide and methane)into value-added products have been progressed rapidly.The efficiency of electron transfer and energy supply are essential for microbial carbon fixation.In this review,the concepts of direct and indirect electron transfer chains in methanotrophic and chemoautotrophic microbes were introduced firstly.Subsequently,the strategies of supplying light and electrical energy as well as their effects on metabolic flux,synthetic pathway and energy supply efficiency during microbial carbon fixation were discussed.Finally,solutions and application prospects to address the key technical challenges of microbial carbon fixation were discussed.
作者 焦子悦 黄小涵 郭树奇 王新宇 钟超 费强 JIAO Ziyue;HUANG Xiaohan;GUO Shuqi;WANG Xinyu;ZHONG Chao;FEI Qiang(School of Chemical Engineering and Technology,Xi’an Jiaotong University,Xi’an 710049,Shaanxi,China;Center for Materials Synthetic Biology,Shenzhen Institute of Synthetic Biology,Shenzhen Institutes of Advanced Technology,Chinese Academy of Sciences,Shenzhen 518055,Guangdong,China;Shaanxi Key Laboratory of Energy Chemical Process Intensification,Xi’an 710049,Shaanxi,China)
出处 《生物工程学报》 CAS CSCD 北大核心 2022年第7期2396-2409,共14页 Chinese Journal of Biotechnology
基金 国家重点研发计划(2021YFC2103500) 国家自然科学基金(22178281)。
关键词 微生物固碳 电子传递 二氧化碳 甲烷 microbial carbon fixation electron transfer carbon dioxide methane
  • 相关文献

参考文献8

二级参考文献44

  • 1罗明芳,吴昊,王磊,邢新会.含有甲烷氧化菌的混合菌群特性研究[J].微生物学报,2007,47(1):103-109. 被引量:16
  • 2宋中邦,陈丽梅,李昆志,潘正波.细菌的核酮糖单磷酸途径与甲醛同化作用[J].微生物学报,2007,47(1):168-172. 被引量:4
  • 3张兰波,刘继开,李东,杨秀山.合成气乙醇发酵的微生物研究[J].可再生能源,2007,25(3):27-30. 被引量:7
  • 4Hanson RS, Hanson TE. Methanotrophic bacteria[J]. Microbiological Reviews, 1996, 60(2): 439-471.
  • 5Jiang H, Chen Y, Jiang P, et al. Methanotrophs: Multifunctional bacteria with promising applications in environmental bioengineering[J]. Biochemical Engineering Journal, 2010, 49(3): 277-288.
  • 6Helm J, Wendlandt KD, Rogge G, et al. Characterizing a stable methane-utilizing mixed culture used in the synthesis of a high-quality biopolymer in an open system[J]. Journal of Applied Microbiology, 2006, 101(2): 387-395.
  • 7Bothe H, Moiler Jensen K, Mergel A, et al. Heterotrophic bacteria growing in association with Methyloeoccus capsulatus (Bath) in a single cell protein production process[J]. Applied Microbiology and Biotechnology, 2002, 59(1): 33-39.
  • 8Helm J, Wendlandt KD, Jechorek M, et al. Potassium deficiency results in accumulation of ultra-high molecular weight poly-β-hydroxybutyrate in a methane-utilizing mixed culture[J]. Journal of Applied Microbiology, 2008, 105(4): 1054-1061.
  • 9Pieja AJ, Sundstrom ER, Criddle CS. Cyclic, alternating methane and nitrogen limitation increases PHB production in a methanotrophic community[J]. Bioresource Technology, 2012, 107: 385-392.
  • 10Chang HL, Alvarez-Cohen L. Two-stage methanotrophic bioreaetor for the treatment of chlorinated organic wastewater[J]. Water Research, 1997, 31: 2026-2036.

共引文献35

同被引文献174

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部