期刊文献+

Malaria Blood Smear Classification Using Deep Learning and Best Features Selection

下载PDF
导出
摘要 Malaria is a critical health condition that affects both sultry and frigid region worldwide,giving rise to millions of cases of disease and thousands of deaths over the years.Malaria is caused by parasites that enter the human red blood cells,grow there,and damage them over time.Therefore,it is diagnosed by a detailed examination of blood cells under the microscope.This is the most extensively used malaria diagnosis technique,but it yields limited and unreliable results due to the manual human involvement.In this work,an automated malaria blood smear classification model is proposed,which takes images of both infected and healthy cells and preprocesses themin the L^(*)a^(*)b^(*)color space by employing several contrast enhancement methods.Feature extraction is performed using two pretrained deep convolutional neural networks,DarkNet-53 and DenseNet-201.The features are subsequently agglutinated to be optimized through a nature-based feature reduction method called the whale optimization algorithm.Several classifiers are effectuated on the reduced features,and the achieved results excel in both accuracy and time compared to previously proposed methods.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第1期1875-1891,共17页 计算机、材料和连续体(英文)
基金 This research was supported by the MSIT(Ministry of Science and ICT),Korea,under the ICAN(ICT Challenge and Advanced Network of HRD)program(IITP-2021-2020-0-01832)supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)and the Soonchunhyang University Research Fund.
  • 相关文献

参考文献1

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部