摘要
曝光偏差严重影响协同过滤模型的推荐精度,导致预测结果偏离用户的真实兴趣,而现有模型对曝光偏差的建模能力有限,甚至放大偏差。为此,提出融合多模态深度游走与偏差校准因子(MmDW-BC)的推荐模型。首先,引入项目多模态属性特征作为项目图的连接边,从而缓解低曝光项目交互数据稀疏的问题;在此基础上,构建图嵌入模块--多模态深度游走(MmDW)将项目多模态信息融入嵌入向量,以获取丰富的节点表示;最后,基于校准策略设计新的偏差校准推荐算法进行用户偏好预测。将提出的模型应用于Amazon和ML-1M数据集上,实验结果验证所提模型明确考虑曝光偏差来提升推荐精度的必要性和有效性。
Exposure bias seriously affects the recommendation accuracy of collaborative filtering model,resulting in the prediction results deviating from the real interests of users.However,the modeling ability of the existing models for exposure bias is limited,and these models even magnify the bias.Therefore,a recommendation model that integrates Multimodal DeepWalk and Bias Calibration factor(MmDW-BC)was proposed.Firstly,the multimodal attribute features of items were introduced as the connected edges in item graph to alleviate the problem of interactive data sparsity of low-exposure items.On this basis,the graph embedding module,Multimodal DeepWalk(MmDW),was constructed to obtain rich node representation by integrating item multimodal information into the embedding vectors.Finally,a new bias calibration algorithm was designed based on the calibration strategy to predict user preferences.Experimental results on Amazon and ML-1M datasets show that definitely considering exposure bias to improve the recommendation accuracy in MmDW-BC recommendation model is necessary and effective.
作者
武子腾
宋承云
WU Ziteng;SONG Chengyun(College of Computer Science and Engineering,Chongqing University of Technology,Chongqing 400054,China)
出处
《计算机应用》
CSCD
北大核心
2022年第8期2432-2439,共8页
journal of Computer Applications
基金
国家自然科学基金资助项目(41804112)
重庆理工大学研究生创新项目(clgycx20202093)。