期刊文献+

基于近端策略优化算法的电化学/氢混合储能系统双层配置及运行优化 被引量:13

Research on Two-Layer Configuration and Operation Optimization Based on Proximal Policy Optimization for Electrochemical/Hydrogen Hybrid Energy Storage System
原文传递
导出
摘要 针对电化学储能和氢储能的互补特性,提出了一种包含电化学和氢储能的混合储能系统配置和运行的综合优化模型,并提出了智能算法进行求解。该模型基于双层决策优化问题,将混合储能系统配置及运行2个不同时间维度的问题分上下层进行综合求解,并考虑了两者间的相互影响,采用强化学习近端策略优化(proximal policy optimization,PPO)算法求解该双层优化模型。以甘肃省某地区的风光数据,通过对比应用多种传统算法求解结果,验证了所用算法在复杂环境下适应度最高且收敛速度最快。研究结果表明,应用该模型最大可降低24%的弃风、弃光率,有效提升系统综合效益。氢储能作为容量型储能配置不受地形因素限制,适用于多样的应用场景,从而为氢储能这一新型储能形态在全国的广泛配置提供了应用示范。 According to the complementary characteristics of electrochemical energy storage and hydrogen storage, an integrated optimization model for the configuration and operation of a hybrid energy storage system is given, including electrochemical energy storage, hydrogen storage proposed and an intelligent algorithm. The model is based on a two-layer decision optimization problem, in which two different time dimensions of the hybrid energy storage system configuration and operation are solved in upper and lower layers, and the interaction between them is considered. A reinforcement learning proximal policy optimization(PPO) algorithm is used to solve the two-layer optimization model. By comparing the results of applying various traditional algorithms to solve the scenery data of a region in Gansu Province, it is verified that the used algorithm has the highest adaptability and the fastest convergence speed in a complex environment. The results show that the application of this model can reduce the abandoning rate of wind and solar power by 24% and effectively improve the comprehensive benefit of the system, and that hydrogen storage as a capacity-based energy storage configuration is not limited by topographical factors and is suitable for diverse application scenarios, thus providing an application demonstration for the widespread deployment of hydrogen storage, a new form of energy storage, in the whole country.
作者 闫庆友 史超凡 秦光宇 许传博 YAN Qingyou;SHI Chaofan;QIN Guangyu;XU Chuanbo(School of Economics and Management,North China Electric Power University,Beijing 102206,China;Beijing Key Laboratory of New Energy and Low-Carbon Development(North China Electric Power University),Beijing 102206,China;University of California,Berkeley,Renewable and Appropriate Laboratory,Berkeley 94709,San Francisco,US)
出处 《电力建设》 CSCD 北大核心 2022年第8期22-32,共11页 Electric Power Construction
基金 国家留学基金委资助项目(202006730045)。
关键词 风光消纳 储能配置 双层优化 氢储能 近端策略优化(PPO)算法 wind-solar consumption energy storage configuration two-level optimization hydrogen energy storage proximal policy optimization(PPO)algorithm
  • 相关文献

参考文献25

二级参考文献419

共引文献1338

同被引文献267

引证文献13

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部