期刊文献+

Brain Tumor Detection and Classification Using PSO and Convolutional Neural Network 被引量:2

下载PDF
导出
摘要 Tumor detection has been an active research topic in recent years due to the high mortality rate.Computer vision(CV)and image processing techniques have recently become popular for detecting tumors inMRI images.The automated detection process is simpler and takes less time than manual processing.In addition,the difference in the expanding shape of brain tumor tissues complicates and complicates tumor detection for clinicians.We proposed a newframework for tumor detection aswell as tumor classification into relevant categories in this paper.For tumor segmentation,the proposed framework employs the Particle Swarm Optimization(PSO)algorithm,and for classification,the convolutional neural network(CNN)algorithm.Popular preprocessing techniques such as noise removal,image sharpening,and skull stripping are used at the start of the segmentation process.Then,PSO-based segmentation is applied.In the classification step,two pre-trained CNN models,alexnet and inception-V3,are used and trained using transfer learning.Using a serial approach,features are extracted from both trained models and fused features for final classification.For classification,a variety of machine learning classifiers are used.Average dice values on datasets BRATS-2018 and BRATS-2017 are 98.11 percent and 98.25 percent,respectively,whereas average jaccard values are 96.30 percent and 96.57%(Segmentation Results).The results were extended on the same datasets for classification and achieved 99.0%accuracy,sensitivity of 0.99,specificity of 0.99,and precision of 0.99.Finally,the proposed method is compared to state-of-the-art existingmethods and outperforms them.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第12期4501-4518,共18页 计算机、材料和连续体(英文)
基金 This work was supported by“Human Resources Program in Energy Technology”of the Korea Institute of Energy Technology Evaluation and Planning(KETEP) granted financial resources from the Ministry of Trade,Industry&Energy,Republic of Korea.(No.20204010600090).
  • 相关文献

参考文献2

二级参考文献4

共引文献19

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部