期刊文献+

Block-Wise Neural Network for Brain Tumor Identification in Magnetic Resonance Images

下载PDF
导出
摘要 The precise brain tumor diagnosis is critical and shows a vital role in the medical support for treating tumor patients.Manual brain tumor segmentation for cancer analysis from many Magnetic Resonance Images(MRIs)created in medical practice is a problematic and timewasting task for experts.As a result,there is a critical necessity for more accurate computeraided methods for early tumor detection.To remove this gap,we enhanced the computational power of a computer-aided system by proposing a finetuned Block-Wise Visual Geometry Group19(BW-VGG19)architecture.In this method,a pre-trained VGG19 is fine-tuned with CNN architecture in the block-wise mechanism to enhance the system`s accuracy.The publicly accessible Contrast-Enhanced Magnetic Resonance Imaging(CE-MRI)dataset collected from 2005 to 2020 from different hospitals in China has been used in this research.Our proposed method is simple and achieved an accuracy of 0.98%.We compare our technique results with the existing Convolutional Neural network(CNN),VGG16,and VGG19 approaches.The results indicate that our proposed technique outperforms the best results associated with the existing methods.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第12期5735-5753,共19页 计算机、材料和连续体(英文)
基金 Authors would like to acknowledge the support of the Deputy for Research and Innovation-Ministry of Education,Kingdom of Saudi Arabia for funding this research through a project(NU/IFC/ENT/01/014)under the institutional funding committee at Najran University,Kingdom of Saudi Arabia。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部