期刊文献+

WDBM: Weighted Deep Forest Model Based Bearing Fault Diagnosis Method 被引量:1

下载PDF
导出
摘要 In the research field of bearing fault diagnosis,classical deep learning models have the problems of too many parameters and high computing cost.In addition,the classical deep learning models are not effective in the scenario of small data.In recent years,deep forest is proposed,which has less hyper parameters and adaptive depth of deep model.In addition,weighted deep forest(WDF)is proposed to further improve deep forest by assigning weights for decisions trees based on the accuracy of each decision tree.In this paper,weighted deep forest model-based bearing fault diagnosis method(WDBM)is proposed.The WDBM is regard as a novel bearing fault diagnosis method,which not only inherits the WDF’s advantages-strong robustness,good generalization,less parameters,faster convergence speed and so on,but also realizes effective diagnosis with high precision and low cost under the condition of small samples.To verify the performance of the WDBM,experiments are carried out on Case Western Reserve University bearing data set(CWRU).Experiments results demonstrate that WDBM can achieve comparative recognition accuracy,with less computational overhead and faster convergence speed.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第9期4741-4754,共14页 计算机、材料和连续体(英文)
基金 :The work is supported by the National Key R&D Program of China(No.2021YFB2700500,2021YFB2700503).Tao Wang received the grant and the URLs to sponsors’websites is https://service.most.gov.cn/.
  • 相关文献

参考文献5

二级参考文献16

共引文献141

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部