期刊文献+

分数图式进阶模型有效性检验与学生表现分析 被引量:8

Verification of Fractional Schema Progression Model andAnalysis of Chinese Primary School Students’Performance
下载PDF
导出
摘要 以分数图式进阶理论为理论基础,编制了分数图式进阶测评工具,对402名使用北师大版和人教版数学教材的六年级小学生的分数图式发展情况进行了分析.测验结果显示,该测验工具的质量较高,符合RASCH模型的单维性假设;中国小学生的分数推理的发展顺序与分数图式理论模型基本一致,在迭代分数图式以及分配均分图式两个阶段的发展与理论稍有差异;使用人教版的小学生在一部分分数图式阶段上的表现优于使用北师大版的学生.建议设计能够促进小学生分数图式发展的操作性游戏活动,并鼓励用合适的表征方式表达分数的度量意义以及运算过程,让学生真正理解分数的度量意义. Fraction has always been a difficult point in primary school students’mathematics learning.Based on the advanced theory of fractional schema,a testing tool of students’learning progression on fractional schema is developed.The results of RASCH modeling shows that this tool has good reliability and validity,and the investigation of 402 primary school students of Year 6,who are using the mathematics textbooks of Beijing Normal University and the People’s Education Edition,reveals that Chinese students’actual development of fraction is basically the same as the learning progression model of fractional schema,but there are some differences between actual and expected development on two stages:iterative fractional schema and distributing fractional schema.And students using PEP mathematics textbooks perform better than those using BNUP textbooks in some fractional schema stages.According to the above conclusions,two suggestions are proposed to help students to deeply understand the measurement meaning of fraction.The first is to design the operational game activities to promote students’development of fractional schema.The second is to use suitable representations to express the measurement meaning of fraction and computational process.
作者 孙文娟 丁锐 SUN Wen-juan;DING Rui(Faculty of Education,Northeast Normal University,Jilin Changchun,130024 China)
出处 《数学教育学报》 CSSCI 北大核心 2022年第4期32-37,97,共7页 Journal of Mathematics Education
基金 教育部人文社会科学研究规划基金2019年度一般项目--小学生数学核心概念学习进阶的构建与诊断(19YJA880007)。
关键词 分数图式 学习进阶 RASCH模型 fractional schemes learning progression RASCH modeling
  • 相关文献

参考文献9

二级参考文献108

  • 1倪玉菁.五、六年级小学生对分数的意义和性质的理解[J].心理发展与教育,1999,15(4):26-30. 被引量:17
  • 2张丹,孙京红.整体建构分数意义的教学行动研究[J].数学教育学报,2015,24(2):22-25. 被引量:7
  • 3巩子坤,宋乃庆.新课标小学数学教科书总复习设计的原则与策略[J].课程.教材.教法,2006,26(8):33-37. 被引量:9
  • 4中华人民共和国教育部.义务教育数学课程标准(2011年版)[S].北京:北京师范大学出版社,2012:2.
  • 5Lisa Fratt. Less is more: trimming the overstuffed curriculum [EB/OL]. [20120307]. http://www, project2061, org/pub- lications/articles/articles/da, htm,.
  • 6美国科学促进会.科学素养的设计[M].中国科学技术协会,译.北京:科学普及出版社,2005.
  • 7National Research Council. How Students Learn: History, Mathematics, and Science in the Classroom [M]. Washington, D. C. : The National Academies Press, 2005.
  • 8National Research Council. Systems for State Science Assessment [M]. Washington, D. C. : The National Academies Press, 2005.
  • 9Smhh C, Wiser M, Anderson C W, et al. Implications of Research on Children's Learning for Assessment: Matter and Atomic Molecular Theory [R]. Washington D. C. : National Academy of Sciences, 2004.
  • 10Smith C, Wiser M, Anderson C W, et al. Implications of Research on Children's Learning for Standards and Assessment: A Proposed Learning Progression for Matter and the Atomic-Molecular Theory [J]. Measurement: Interdisciplinary Research and Perspectives, 2006, 4(1-2): 1-98.

共引文献572

同被引文献188

引证文献8

二级引证文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部