期刊文献+

Deep learning-based key-block classification framework for discontinuous rock slopes 被引量:4

下载PDF
导出
摘要 The key-blocks are the main reason accounting for structural failure in discontinuous rock slopes, and automated identification of these block types is critical for evaluating the stability conditions. This paper presents a classification framework to categorize rock blocks based on the principles of block theory. The deep convolutional neural network(CNN) procedure was utilized to analyze a total of 1240 highresolution images from 130 slope masses at the South Pars Special Zone, Assalouyeh, Southwest Iran.Based on Goodman’s theory, a recognition system has been implemented to classify three types of rock blocks, namely, key blocks, trapped blocks, and stable blocks. The proposed prediction model has been validated with the loss function, root mean square error(RMSE), and mean square error(MSE). As a justification of the model, the support vector machine(SVM), random forest(RF), Gaussian naïve Bayes(GNB), multilayer perceptron(MLP), Bernoulli naïve Bayes(BNB), and decision tree(DT) classifiers have been used to evaluate the accuracy, precision, recall, F1-score, and confusion matrix. Accuracy and precision of the proposed model are 0.95 and 0.93, respectively, in comparison with SVM(accuracy = 0.85, precision = 0.85), RF(accuracy = 0.71, precision = 0.71), GNB(accuracy = 0.75,precision = 0.65), MLP(accuracy = 0.88, precision = 0.9), BNB(accuracy = 0.75, precision = 0.69), and DT(accuracy = 0.85, precision = 0.76). In addition, the proposed model reduced the loss function to less than 0.3 and the RMSE and MSE to less than 0.2, which demonstrated a low error rate during processing.
出处 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第4期1131-1139,共9页 岩石力学与岩土工程学报(英文版)
基金 support provided by the National Natural Science Foundation of China(Grant No.42077235) the National Key Research and Development Program of China(Grant No.2018YFC1505104).
  • 相关文献

参考文献2

二级参考文献4

共引文献31

同被引文献41

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部