期刊文献+

Automated Grading of Breast Cancer Histopathology Images Using Multilayered Autoencoder

下载PDF
导出
摘要 Breast cancer(BC)is the most widely recognized cancer in women worldwide.By 2018,627,000 women had died of breast cancer(World Health Organization Report 2018).To diagnose BC,the evaluation of tumours is achieved by analysis of histological specimens.At present,the Nottingham Bloom Richardson framework is the least expensive approach used to grade BC aggressiveness.Pathologists contemplate three elements,1.mitotic count,2.gland formation,and 3.nuclear atypia,which is a laborious process that witness’s variations in expert’s opinions.Recently,some algorithms have been proposed for the detection of mitotic cells,but nuclear atypia in breast cancer histopathology has not received much consideration.Nuclear atypia analysis is performed not only to grade BC but also to provide critical information in the discrimination of normal breast,non-invasive breast(usual ductal hyperplasia,atypical ductal hyperplasia)and pre-invasive breast(ductal carcinoma in situ)and invasive breast lesions.We proposed a deep-stacked multi-layer autoencoder ensemble with a softmax layer for the feature extraction and classification process.The classification results show the value of the multilayer autoencoder model in the evaluation of nuclear polymorphisms.The proposed method has indicated promising results,making them more fit in breast cancer grading.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第5期3407-3423,共17页 计算机、材料和连续体(英文)
基金 This work was supported by Taif University(in Taif,Saudi Arabia)through the Researchers Supporting Project Number(TURSP-2020/150).
  • 相关文献

参考文献1

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部