期刊文献+

Continuous Tracking of GPS Signals with Data Wipe-Off Method

下载PDF
导出
摘要 The decentralized pre-filter based vector tracking loop(VTL)configuration with data wipe-off(DWO)method of the Global Positioning System(GPS)receiver is proposed for performance enhancement.It is a challenging task to continuously track the satellites’signals in weak signal environment for the GPS receiver.VTL is a very attractive technique as it can provide tracking capability in signal-challenged environments.In the VTL,each channel will not form a loop independently.On the contrary,the signals in the channels of VTL are shared with each other;the navigation processor in turn predicts the code phases.Thus,the receiver can successfully track signals even the signal strength from individual satellite is weak.The tracking loop based on the pre-filter provides more flexible adjustment to specific environments to reduce noise interference.Therefore,even if the signals from some satellites are very weak the receiver can track them from the navigation results based on the other satellites.The navigation data,which contains information necessary to perform navigation computations,are binary phase-shift keying(BPSK)modulated onto the GPS carrier phase with the bit duration of 20 ms(i.e.,50 bits per second)for the GPS L1 C/A signals.The coherent integration interval can be extended for improved tracking performance in signal-challenged environment.However,tracking accuracy is decreased by possible data bit sign reversal.The DWO algorithm can be employed to remove the data bit in I and Q correlation values so as to avoid energy loss due to bit transitions when the integration interval of the correlator is extended over 20 ms under the low carrier-to-noise ratio(C/No)environments.The proposed method has an advantage to provide continuous tracking of signals and obtain improved navigation performance.Performance evaluation of the tracking capability as well as positioning accuracy will be presented.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第5期3803-3820,共18页 计算机、材料和连续体(英文)
基金 This work has been partially supported by the Ministry of Science and Technology,Taiwan[Grant Numbers MOST 101-2221-E-019-027-MY3 and MOST 109-2221-E-019-010].
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部