期刊文献+

基于近红外光谱和机器学习的无创血糖浓度回归研究

Research on Non-invasive Blood Glucose Concentration Regression Based on Near-infrared Spectroscopy and Machine Learning
下载PDF
导出
摘要 无创血糖浓度预测是目前的热点研究问题,其预测精度容易受到各种不同因素干扰。针对基于近红外光谱的无创血糖浓度回归问题,重点分析了指端相邻位置光谱散射对回归精度的影响。OGTT实验是无创血糖浓度预测问题中的采集数据的经典方法,通过OGTT实验采集了指端区域近红外光谱及对应的血糖浓度数据,并利用支持向量机回归算法预测血糖浓度。总共设计了3组实验,实验结果表明,多区域数据的采集和平均能有效降低指端相邻位置对光谱不同散射带来的回归误差。 Non-invasive blood glucose concentration prediction is a hot research issue at present,and its prediction accuracy is easily interfered by various factors. Aiming at the problem of non-invasive blood glucose concentration regression based on near-infrared spectroscopy,in this paper,the analysis of the influence of spectral scattering is focused on at the adjacent position of the fingertip on the regression accuracy. The OGTT experiment is a classic method of collecting data in the problem of non-invasive blood glucose concentration prediction. Through the OGTT experiment,the near-infrared spectrum of the fingertip area and the corresponding blood glucose concentration data are collected;and the support vector machine regression algorithm is used to predict the blood glucose concentration. A total of 3 sets of experiments are designed.The experimental results show that the collection and averaging of multi-region data can effectively reduce the regression error caused by the different scattering of the spectrum at the neighboring position of the finger.
作者 李莹 周林华 LI Ying;ZHOU Linhua(School of Mathematics and Statistics,Changchun University of Science and Technology,Changchun 130022)
出处 《长春理工大学学报(自然科学版)》 2022年第3期138-143,共6页 Journal of Changchun University of Science and Technology(Natural Science Edition)
基金 国家自然科学基金(11426045) 吉林省自然科学基金学科布局项目(20180101229JC)。
关键词 无创血糖 近红外光谱 支持向量回归 光谱散射 non-invasive blood glucose near infrared spectroscopy support vector regression spectral scattering
  • 相关文献

参考文献2

二级参考文献9

  • 1Alavi SM,Gourzi M,Rouane A,et al.An original method for non-invasive glucose measurement:preliminary results.2001 proceedings of the 23rd Annual EMBS International Conference,Istanbul,Turkey,2001∶3318-3320
  • 2Blank TB,Ruchti TL,Lorenz AD,et al.Clinical results from a non-invasive blood glucose monitor.Photonics West 2002 Meeting,San Jose,CA,Jan,2002∶19-25
  • 3Stark E,Luchter K.Near-Infrared Analysis:A Technology for Quantitative and Qualitaitive Analysis.Applied Spectroscopy Review,1986;22(4)∶335
  • 4Frank I,Friedman J.A statistical view of some chemometrics regression tools.Technometrics,1993;35∶109
  • 5Stone M,Brooks R.Continuum regression:Cross-validated sequentially constructed prediction embracing ordinary least squares,partial least squares,and principal components regression.Journal of the Royal Statistical Society,Series B,1990;52(2)∶237
  • 6Omar S.Khall.Spectroscopic and clinical aspects of noninvasive glucose measurement.Clinical Chemistry,1999;45(2)∶165
  • 7Stephen FM,Timothy LR,Thomas BB,et al.Noninvasive prediction of glucose by near-infrared diffuse reflectance spectroscopy.Clinical Chemistry,1999;45(9)∶1651
  • 8Tenhunen Jussi,Kopola Hard,Myllyla Risto.Non-invasive glucose measurement based on selective near infrared absorption:Requirements on instrumentation and spectral range.Journal of the International Measurement Confederation,1998;24(3)∶173
  • 9M. Ramakrishna Murty,Anima Naik,J. V. R. Murthy,P. V. G. D. Prasad Reddy,Suresh C. Satapathy,K. Parvathi.Automatic Clustering Using Teaching Learning Based Optimization[J].Applied Mathematics,2014,5(8):1202-1211. 被引量:3

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部