期刊文献+

Beamforming Performance Analysis of Millimeter-Wave 5G Wireless Networks 被引量:1

下载PDF
导出
摘要 With the rapid growth in the number of mobile devices and user connectivity,the demand for higher system capacity and improved qualityof-service is required.As the demand for high-speed wireless communication grows,numerous modulation techniques in the frequency,temporal,and spatial domains,such as orthogonal frequency division multiplexing(OFDM),time division multiple access(TDMA),space division multiple access(SDMA),and multiple-input multiple-output(MIMO),are being developed.Along with those approaches,electromagnetic waves’orbital angular momentum(OAM)is attracting attention because it has the potential to boost the wireless communication capacity.Antenna electromagnetic radiation can be described by a sum of Eigen functions with unique eigenvalues,as is well known.In order to address such issues,the millimeter-wave(mmWave)communication is proposed which is considered as one of the potential technology for 5G wireless networks.The intrinsic feature of all electromagnetic waves is OAM.The OAM beams’unique qualities have led to a slew of new uses.Broadband OAM generators,on the other hand,have gotten very little attention,especially in the mmWave frequency band.The use of OAM in conjunction with mmWave can reduce the beam power loss,enhance the received signal quality,and hence increase the systemcapacity.The transmitter and receiver antennas must be coaxial and parallel to achieve precise mode detection.The proposed mmWave integrated with OAM system model is discussed in this study.The channel model is created using the channel transition characteristics.The simulation results demonstrate that the proposed system model is a good way to boost the system capacity.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第3期5383-5397,共15页 计算机、材料和连续体(英文)
  • 相关文献

参考文献1

二级参考文献21

  • 1Geim A K and Novoselov K S 2007 Nat. Mater. 6 183.
  • 2Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnel- son M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197.
  • 3Huang Z X, Wang L Y, Bai S Y and Tang Z A 2015 Chin. Phys. Lett. 32 086801.
  • 4Blake P, Hill E W, Castro N A H, Novoselov K S, Jiang D, Yang R, Booth T J and Geim A K 2007 Appl. Phys. Lett. 91 063124.
  • 5Zhang W X, Liu Y X, Tian H, Xu J W and Feng L 2015Chin. Phys. B 24 076104.
  • 6Blake P, Brimicombe P D, Nair R R, Booth T J, Jiang D, Schedin F, Ponomarenko L A, Morozov S V, Gleeson H F, Hill E W, Gcim A K and Novoselov K S 2008 Nano Lett. 8 1704.
  • 7Schwierz F 2010 Nat. Nanotechnol. 5 487.
  • 8Sui P F, Zhao Y C, Dai Z H and Wang W T 2013 Chin. Phys. Lett. 30 0107306.
  • 9Jablan M, Buljan H and Solja~id M 2009 Phys. Rev. B 80 245435.
  • 10Chen T and Lu X H 2015 Chin. Phys. Left. 32 024204.

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部