期刊文献+

Automatic Heart Disease Detection by Classification of Ventricular Arrhythmias on ECG Using Machine Learning 被引量:2

下载PDF
导出
摘要 This paper focuses on detecting diseased signals and arrhythmias classification into two classes:ventricular tachycardia and premature ventricular contraction.The sole purpose of the signal detection is used to determine if a signal has been collected from a healthy or sick person.The proposed research approach presents a mathematical model for the signal detector based on calculating the instantaneous frequency(IF).Once a signal taken from a patient is detected,then the classifier takes that signal as input and classifies the target disease by predicting the class label.While applying the classifier,templates are designed separately for ventricular tachycardia and premature ventricular contraction.Similarities of a given signal with both the templates are computed in the spectral domain.The empirical analysis reveals precisions for the detector and the applied classifier are 100%and 77.27%,respectively.Moreover,instantaneous frequency analysis provides a benchmark that IF of a normal signal ranges from 0.8 to 1.1 Hz whereas IF range for ventricular tachycardia and premature ventricular contraction is 0.08–0.6 Hz.This indicates a serious loss of high-frequency contents in the spectrum,implying that the heart’s overall activity is slowed down.This study may help medical practitioners in detecting the heart disease type based on signal analysis.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第4期17-33,共17页 计算机、材料和连续体(英文)
基金 This research was supported by the MSIT(Ministry of Science and ICT),Korea,under the ICAN(ICT Challenge and Advanced Network of HRD)program(IITP-2021-2020-0-01832)supervised by the IITP(Institute of Information&Communications Technology Planning&Evaluation)and the Soonchunhyang University Research Fund.
  • 相关文献

参考文献1

共引文献1

同被引文献3

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部