期刊文献+

N-doped CoAl oxides from hydrotalcites with enhanced oxygen vacancies for excellent low-temperature propane oxidation

原文传递
导出
摘要 A series of nitrogen-doped CoAlO(N-CoAlO)were constructed by a hydrothermal route combined with a controllable NH_(3) treatment strategy.The effects of NH_(3) treatment on the physico-chemical properties and oxidation activities of N-Co AlO catalysts were investigated.In comparison to CoAlO,a smallest content decrease in surface Co^(3+)(serving as active sites)while a largest increased amount of surface Co^(2+)(contributing to oxygen species)are obtained over N-Co AlO/4h among the N-CoAlO catalysts.Meanwhile,a maximum N doping is found over N-CoAlO/4h.As a result,N-CoAlO/4h(under NH_(3) treatment at 400℃ for 4 hr)with rich oxygen vacancies shows optimal catalytic activity,with a T90(the temperature required to reach a 90% conversion of propane)at 266℃.The more oxygen vacancies are caused by the co-operative effects of N doping and suitable reduction of Co^(3+) for NCoAlO/4h,leading to an enhanced oxygen mobility,which in turn promotes C_(3)H_(8) total oxidation activity dominated by Langmuir-Hinshelwood mechanism.Moreover,in situ diffuse reflectance infrared Fourier transform spectroscopy(DRIFTs)analysis shows that N doping facilities the decomposition of intermediate species(propylene and formate)into CO_(2)over the catalyst surface of N-CoAlO/4h more easily.Our reported design in this work will provide a promising way to develop abundant oxygen vacancies of Co-based catalysts derived from hydrotalcites by a simple NH_(3) treatment.
出处 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第6期79-89,共11页 环境科学学报(英文版)
基金 financially supported by the National Key Research and Development Program of China(No.2019YFC1904500) Young Top Talents of Fujian Young Eagle Program。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部