期刊文献+

基于卷积自编码网络的故障电弧多分类识别方法

Multi-classification recognition method of arc fault based on convolutional autoencoder network
下载PDF
导出
摘要 针对非线性负载条件下线路正常工作电流波形与故障电弧波形具有相似特征,容易引起故障电弧保护装置误动作的问题,提出一种基于卷积自编码网络的故障电弧多分类识别方法。采用卷积自动编码器进行故障电弧特征提取,优化设计卷积自动编码器网络模型参数,并利用Softmax多分类器建立故障电弧多分类识别网络模型。实验结果表明,所提方法的故障电弧识别准确率达到99.31%,相应负载类型识别准确率达到97.94%,满足故障电弧识别要求。 Under non-linear load conditions,the current waveform during normal operation has similar characteristics as arc faults.The arc fault protection device is prone to malfunction.A multi-class recognition method of arc fault based on convolutional autoencoder network was proposed.A convolutional autoencoder was used to extract arc fault features,the parameters were optimized,and Softmax multi-classifier was used to build the arc fault multi-classification and recognition network model.Experimental results showed that,the arc fault identification accuracy of the proposed method was 99.31%,the identification accuracy of the corresponding load type reached 97.94%.It met the requirements of arc fault identification.
作者 李奎 张丹 王尧 LI Kui;ZHANG Dan;WANG Yao(Key Laboratory of Electromagnetic Field and Elctrical Apparatus Reliability of Hebei Province,Hebei University of Technology,Tianjin 300130,China;State Key Laboratory of Reliabiliy and Itelligence of Electrical Equipment,Hebei University of Technology,Tianjin 300130,China)
出处 《河南理工大学学报(自然科学版)》 CAS 北大核心 2022年第4期107-116,共10页 Journal of Henan Polytechnic University(Natural Science)
基金 国家自然科学基金资助项目(51607055) 河北省自然科学基金资助项目(E2020202204) 特种电机与高压电器教育部重点实验室(沈阳工业大学)开放课题项目(KFKT202003) 浙江省基础公益研究计划项目(LGG20E070002)。
关键词 串联故障电弧 卷积自动编码器 Softmax多分类器 非线性负载 故障电弧识别 series arc fault convolutional autoencoder Softmax multi-classifier non-linear load arc fault recognition
  • 相关文献

参考文献11

二级参考文献95

共引文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部