期刊文献+

7种时间序列模型对全国肾综合征出血热发病率预测效果比较 被引量:8

Comparison of seven time series models in fitting and predicting the incidence of hemorrhagic fever with renal syndrome in China
原文传递
导出
摘要 目的比较7种常用时间序列模型对全国肾综合征出血热(HFRS)发病率拟合及预测的效果,为优化HFRS预警方法提供参考。方法以2004年1月-2017年6月全国HFRS发病率作为训练数据,建立乘积季节自回归移动平均模型(SARIMA)、指数平滑模型(ETS)、时间序列线性模型(TSLM)、自回归神经网络模型(NNAR)、指数平滑空间状态模型(TBATS)、时间序列3次样条平滑模型(TSSPLINE)和时间序列广义回归模型(TSGRNN),并预测2017年7-12月全国HFRS发病率。以2017年7-12月全国HFRS发病率作为测试数据,比较拟合值与训练数据、预测值与测试数据评价模型拟合及预测效果,评价指标包括平均绝对误差百分比(MAPE)和均数标准差(RMSE)。结果SARIMA(0,1,4)(2,1,1)_([12])为SARIMA最优模型,NNAR(16,1,8)_([12])为NNAR最优模型。SARIMA、ETS、TSLM、NNAR、TBATS、TSSPLINE和TSGRNN模型拟合的MAPE、RMSE分别为11.46%、0.01,10.25%、0.01,33.91%、0.03,1.84%、0.00,8.92%、0.01,10.82%、0.01和22.29%、0.02。SARIMA、ETS、TSLM、NNAR、TBATS、TSSPLINE和TSGRNN模型预测的MAPE、RMSE分别为20.51%、0.03,17.22%、0.02,55.27%、0.03,36.27%、0.05,18.03%、0.02,118.82%、0.05和38.71%、0.04。结论TBATS为最优预测预警模型,适于优化HFRS预警模型。 Objective To compare the performance of seven time series models in fitting and predicting the incidence of hemorrhagic fever with renal syndrome(HFRS)in China,and to provide a reference for optimizing early warning methods for HFRS.Methods The national incidence data of HFRS from January 2004 to June 2017 were used as training data,and the data from July to December 2017 as test data.The training data were used to build the seasonal autoregressive integrated moving average(SARIMA)model,exponential smoothing(ETS)model,time series linear model(TSLM),autoregressive neural network(NNAR)model,TBATS model,time series cubic spline smoothing(TSSPLINE)model,and time series generalized regression neural network(TSGRNN)model.Then these models were used to forecast the national incidence of HFRS from July to December 2017.The model fitting and prediction effect were evaluated by comparing the fitted data with the training data and the predicted data with the test data.The evaluation indicators included mean absolute percentage error(MAPE)and root mean squared error(RMSE).Results SARIMA(0,1,4)(2,1,1)_([12])was the optimal SARIMA model,and NNAR(16,1,8)_([12])was the optimal NNAR model.The MAPE and RMSE of fitting by SARIMA,ETS,TSLM,NNAR,TBATS,TSSPLINE,and TSGRNN were 11.46% and 0.01,10.25% and 0.01,33.91% and 0.03,1.84% and 0.00,8.92% and 0.01,10.82% and 0.01,and 22.29% and 0.02,respectively.The MAPE and RMSE of forecasting by these models were 20.51% and 0.03,17.22% and 0.02,55.27% and 0.03,36.27% and 0.05,18.03% and 0.02,118.82% and 0.05,and 38.71% and 0.04,respectively.Conclusion The TBATS model is the optimal model for forecasting and early warning,which is suitable for optimizing the early warning model for HFRS.
作者 刘天 姚梦雷 侯清波 黄继贵 吴杨 杨瑞 陈红缨 LIU Tian;YAO Meng-lei;HOU Qing-bo;HUANG Ji-gui;WU Yang;YANG Rui;CHEN Hong-ying(Department for Infectious Disease Control and Prevention,Jingzhou Center for Disease Control and Prevention,Jingzhou,Hubei 434000,China;Hubei Center for Disease Control and Prevention,Wuhan,Hubei 430079,China)
出处 《中国媒介生物学及控制杂志》 CAS 北大核心 2022年第4期548-554,共7页 Chinese Journal of Vector Biology and Control
基金 湖北省卫生计生委2018年联合基金项目(WJ2018H256)。
关键词 肾综合征出血热 预测模型 指数平滑空间状态模型 乘积季节自回归移动平均模型 中国 Hemorrhagic fever with renal syndrome Predictive model TBATS model Seasonal autoregressive integrated moving average model China
  • 相关文献

参考文献6

二级参考文献25

  • 1杨维中,邢慧娴,王汉章,兰亚佳,孙乔,胡世雄,吕伟,袁政安,陈裕旭,董柏青.七种传染病控制图法预警技术研究[J].中华流行病学杂志,2004,25(12):1039-1041. 被引量:144
  • 2马家奇,王丽萍,戚晓鹏,施晓明,杨功焕.基于网络直报的传染病监测自动预警信息系统概念模型[J].疾病监测,2006,21(12):679-681. 被引量:41
  • 3中国疾病预防控制中心.全国传染病自动预警(时间模型)试运行工作方案.北京:中国疾病预防控制中心,2008.
  • 4Henning KJ.What is syndromic surveillance.MMWR,2004,53Suppl:S5-11.
  • 5Tsui FC,Espino JU,Dato VM,et al.Technical description of RODS:a real-time public health surveillance system.J Am Med Inform Assoc,2003,10(5):399-408.
  • 6Valenciano M,Bergeri I,Jankovic D,et al.Strengthening early warning function of surveillance in the Republic of Serbia:lessons learned after a year of implementation.Euro Surveil,2004,9(5):24-26.
  • 7Xiao SM.The early warning system for public health emergency in China.2007 International Conference on Public Administration (ICPA 3nd),184-188.
  • 8Valenciano M, Bergeri I, Jankovic D, et al. Strengthening early warning fimction of surveillance in the Republic of Serbia:lessons learned after a year of implementation. Euro Surveil, 2004,9(5) :24-26.
  • 9Tsui FC, Espino JU, Dato VM, et al. Technical description of RODS: a real-time public health surveillance system. J Am Med Inform Assoc, 2003,10 ( 5 ) : 399-408.
  • 10Cakici B, Hebing K, Grunewald M, et al. CASE: a framework for computer supported outbreak detection. BMC Med Inform Decis Mak,2010,10:14.

共引文献54

同被引文献76

引证文献8

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部