摘要
在INSTRON-5948R微型材料试验机上开展了近β型钛合金Ti55531经800℃/2 h固溶+580~640℃/6~10 h时效热处理后的力学性能试验,获得了不同时效工艺下Ti55531合金的力学性能及强塑积。研究了时效处理对合金微观组织演变规律及合金在拉伸变形时的断裂机制。结果表明:次生片层αs相对时效参数变化比初生α相更敏感。次生片层αs相厚度与时效温度或时效时间呈线性正相关。与时效时间对比可知,次生片层αs相粗化速率对时效温度敏感性较弱,且其随时效温度和时效时间粗化速率分别约为1 nm/℃和8 nm/h。合金经固溶时效后,其力学性能显著提升,且合金在800℃/2 h固溶+640℃/8 h时效后达到最佳的综合力学性能,此时抗拉强度为1144 MPa,延伸率为8.16%,且强塑积超过9.3 GPa·%。合金经固溶时效热处理后拉伸断裂形式为韧脆混合型断裂,且以韧性断裂为主,包括晶间开裂和微孔合并。
The mechanical property tests of near β-type Ti55531 titanium alloy after solution(820 oC/2 h) plus aging(580~640 oC/6~10 h)treatments were carried out on INSTRON-5948R micro tensile machine. The effects of solution plus aging treatment on microstructur al evolution and mechanical properties of Ti55531 alloy were studied to obtain a better combination of ultimate tensile strength and ductility.Furthermore, the fracture mechanism of the alloy during tensile test was discussed. The results show that the secondary lamel lar α phase is more sensitive to the change of aging parameters than the primary α phase. And the thickness of lamellar αs phase is linearly positively correlated with aging temperature or time. Compared with aging time, the coarsening rate of the secondary lamellar αs phase is less sensitive to aging temperature, and the coarsening rate of the secondary lamellar αs phase with aging temperature and aging time is about 1nm/℃ and 8 nm/h, respectively. After solution and aging treatment, the mechanical properties of Ti55531 alloy are significantly im proved,which reach the best comprehensive mechanical properties with solution treatment at 800 oC for 2 h plus aging at 640 oC for 8 h. Under this condition, the ultimate strength is 1144 MPa, the elongation is 8.16%, and the strength-ductility product exceeds 9.3 GPa·%. The tensile fracture modes of Ti55531 alloy are ductile and brittle mixed fracture, and mainly is ductile fracture, including intergranular cracking and microvoid coalescence mechanisms.
作者
张启飞
杨帅
刘书君
张禹森
陈雷
金淼
郭宝峰
Zhang Qifei;Yang Shuai;Liu Shujun;Zhang Yusen;Chen Lei;Jin Miao;Guo Baofeng(School of Mechanical Engineering,Yanshan University,Qinhuangdao 066004,China;Workshop 507,AECC Harbin Dongan Engine Co.,Lid,Harbin 150066,China)
出处
《稀有金属材料与工程》
SCIE
EI
CAS
CSCD
北大核心
2022年第7期2645-2653,共9页
Rare Metal Materials and Engineering
基金
国家自然科学基金(52075474,51675467)
河北省研究生创新项目(CXZZBS2020049)
河北省自然科学基金(E2019203560,E2016203284)
中国博士后科学基金(2016M600194,2017T100712)。